参考文献/References:
[1]MERELES CEUPPENS L G, FERRO E A, ALVARENGA SOSA N L, et al. Chemical composition of Macadamia integrifolia (Maiden and Betche) nuts from Paraguay[J]. International Food Research Journal, 2017, 24(6):2599-2608.
[2]苏继龙,刘远力,吴金东. 香蕉采摘机械的研究现状与发展趋势[J]. 中国农业大学学报,2019,24(7):131-137.
[3]MOREIRA G, MAGALHES S A, PINHO T, et al. Benchmark of deep learning and a proposed HSV colour space models for the detection and classification of greenhouse tomato[J]. Agronomy,2022,12(2):356.
[4]柳军,孔杰,皮杰,等. 果蔬分拣设备研究现状及发展趋势[J]. 中国农机化学报,2024,45(8):120-125.
[5]邢卓冉,丁松爽,张凯,等.计算机视觉与深度学习技术在烟叶生产上的研究进展[J/OL].中国农业科技导报,2024:1-11
[2024-08-01]. https://doi.org/10.13304/j.nykjdb.2023.0379.
[6]廖越,李智敏,刘偲. 基于深度学习的人——物交互关系检测综述[J]. 中国图象图形学报,2022,27(9):2611-2628.
[7]DONG C, ZHANG Z W, YUE J, et al. Automatic recognition of strawberry diseases and pests using convolutional neural network[J]. Smart Agricultural Technology,2021,1:100009.
[8]ZHENG Z H, XIONG J T, LIN H, et al. A method of green Citrus detection in natural environments using a deep convolutional neural network[J]. Frontiers in Plant Science,2021,12:705737.
[9]金梅,李义辉,张立国,等. 基于注意力机制改进的轻量级目标检测算法[J]. 激光与光电子学进展,2023,60(4):385-392.
[10]刘芳,刘玉坤,林森,等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报,2020,51(6):229-237.
[11]侯依廷,饶元,宋贺,等. 复杂大田场景下基于改进YOLOv8的小麦幼苗期叶片数快速检测方法[J]. 智慧农业(中英文),2024,6(4):128-137.
[12]吴小燕,郭威,朱轶萍,等. 基于改进YOLOv8s的大田甘蓝移栽状态检测算法[J]. 智慧农业(中英文),2024,6(2):107-117.
[13]赵鹏飞,钱孟波,周凯琪,等. 改进YOLOv7-Tiny农田环境下甜椒果实检测[J]. 计算机工程与应用,2023,59(15):329-340.
[14]AHMAD T, MA Y L, YAHYA M, et al. Object detection through modified YOLO neural network[J]. Scientific Programming,2020,2020:8403262.
[15]SAPKOTA R, QURESHI R, CALERO M F, et al. YOLOv10 to its genesis: a decadal and comprehensive review of the you only look once (YOLO) series[EB/OL]. (2024-07-26)
[2024-08-16]. https://arxiv.org/pdf/2406.19407.
[16]LAWAL M O. Tomato detection based on modified YOLOv3 framework[J]. Scientific Reports,2021,11(1):1447.
[17]CHEN W K, LU S L, LIU B H, et al. Detecting Citrus in orchard environment by using improved YOLOv4[J]. Scientific Programming,2020,2020:8859237.
[18]YAO J,QI J M,ZHANG J,et al. A real-time detection algorithm for kiwifruit defects based on YOLOv5[J]. Electronics,2021,10(14):1711.
[19]ZHANG Z X, LU X Q, CAO G J, et al. ViT-YOLO:transformer-based YOLO for object detection[C]//IEEE. 2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal,BC,Canada:IEEE,2021:2799-2808.
[20]TERVEN J, CRDOVA-ESPARZA D M, ROMERO-GONZLEZ J A. A comprehensive review of YOLO architectures in computer vision:from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction,2023,5(4):1680-1716.
[21]YAN B, FAN P, LEI X Y, et al. A real-time apple targets detection method for picking robot based on improved YOLOv5[J]. Remote Sensing,2021,13(9):1619.
[22]LI C, LIN J Q, LI Z, et al. An efficient detection method for Litchi fruits in a natural environment based on improved YOLOv7-Litchi[J]. Computers and Electronics in Agriculture,2024,217:108605.
[23]YANG G L, WANG J X, NIE Z L, et al. A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention[J]. Agronomy,2023,13(7):1824.
[24]WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9:learning what you want to learn using programmable gradient information[M]. Cham:Springer Nature Switzerland,2024:1-21.
[25]BAKIRCI M, BAYRAKTAR I. YOLOv9-enabled vehicle detection for urban security and forensics applications[C]//IEEE. 2024 12th International Symposium on Digital Forensics and Security,San Antonio,TX,USA:IEEE,2024:1-6.
[26]LIU S H, YANG Y C, JING X J, et al. BiFormer:an end-to-end deep learning approach for enhanced image-based photoplethysmography and heart rate accuracy[M]. Amsterdam: IOS Press, 2024: 205-214.
[27]WANG X L, XIAO T T, JIANG Y N, et al. Repulsion loss:detecting pedestrians in a crowd[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA:IEEE,2018:7774-7783.
[28]LI H L, LI J, WEI H B, et al. Slim-neck by GSConv:a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing,2024,21(3):62.
[29]GOUTTE C, GAUSSIER E. A probabilistic interpretation of precision,recall and F-score,with implication for evaluation[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,2005:345-359.
[30] FLACH P, KULL M. Precision-recall-gain curves: PR analysis done right[J]. Advances in Neural Information Processing Systems, 2015, 28:838-846.
相似文献/References:
[1]车金庆,王帆,王艺洁,等.基于视觉注意机制的黄绿色苹果图像分割[J].江苏农业学报,2018,(06):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
CHE Jin-qing,WANG Fan,WANG Yi-jie,et al.A segmentation method of yellow and green apple images based on visual attention mechanism[J].,2018,(11):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
[2]车金庆,王帆,吕继东,等.重叠苹果果实的分离识别方法[J].江苏农业学报,2019,(02):469.[doi:doi:10.3969/j.issn.1000-4440.2019.02.030]
CHE Jin-qing,WANG Fan,LYU Ji-dong,et al.Separation and recognition method for overlapped apple fruits[J].,2019,(11):469.[doi:doi:10.3969/j.issn.1000-4440.2019.02.030]
[3]任胜男,孙钰,张海燕,等.基于one-shot学习的小样本植物病害识别[J].江苏农业学报,2019,(05):1061.[doi:doi:10.3969/j.issn.1000-4440.2019.05.009]
REN Sheng-nan,SUN Yu,ZHANG Hai-yan,et al.Plant disease identification for small sample based on one-shot learning[J].,2019,(11):1061.[doi:doi:10.3969/j.issn.1000-4440.2019.05.009]
[4]宋晓倩,张学艺,张春梅,等.基于深度迁移学习的酿酒葡萄种植信息提取[J].江苏农业学报,2020,(03):689.[doi:doi:10.3969/j.issn.1000-4440.2020.03.022]
SONG Xiao-qian,ZHANG Xue-yi,ZHANG Chun-mei,et al.Extraction of wine grape planting information based on deep transfer learning[J].,2020,(11):689.[doi:doi:10.3969/j.issn.1000-4440.2020.03.022]
[5]金沙沙,贾良权,龙伟,等.基于特征选择与骨架提取的种子萌发的芽长、根长检测[J].江苏农业学报,2021,(03):597.[doi:doi:10.3969/j.issn.1000-4440.2021.03.007]
JIN Sha-sha,JIA Liang-quan,LONG Wei,et al.Detection of seed bud length and root length based on feature selection and skeleton extraction[J].,2021,(11):597.[doi:doi:10.3969/j.issn.1000-4440.2021.03.007]
[6]金寿祥,周宏平,姜洪喆,等.采摘机器人视觉系统研究进展[J].江苏农业学报,2023,(02):582.[doi:doi:10.3969/j.issn.1000-4440.2023.02.033]
JIN Shou-xiang,ZHOU Hong-ping,JIANG Hong-zhe,et al.Research progress on visual system of picking robot[J].,2023,(11):582.[doi:doi:10.3969/j.issn.1000-4440.2023.02.033]
[7]李颀,郭梦媛.基于深度学习的休眠期苹果树点云语义分割[J].江苏农业学报,2023,(05):1189.[doi:doi:10.3969/j.issn.1000-4440.2023.05.011]
LI Qi,GUO Meng-yuan.Semantic segmentation of apple tree point cloud in dormant period based on deep learning[J].,2023,(11):1189.[doi:doi:10.3969/j.issn.1000-4440.2023.05.011]
[8]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(11):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
[9]李仁杰,宋涛,高婕,等.基于改进YOLOv5的自然环境下番茄患病叶片检测模型[J].江苏农业学报,2024,(06):1028.[doi:doi:10.3969/j.issn.1000-4440.2024.06.009]
LI Renjie,SONG Tao,GAO Jie,et al.Tomato diseased leaf detection model based on improved YOLOv5 in natural environment[J].,2024,(11):1028.[doi:doi:10.3969/j.issn.1000-4440.2024.06.009]
[10]许鑫,耿庆,郑凯,等.基于纹理特征与深度学习的小麦图像中的穗粒分割与计数[J].江苏农业学报,2024,(04):661.[doi:doi:10.3969/j.issn.1000-4440.2024.04.010]
XU Xin,GENG Qing,ZHENG Kai,et al.Segmentation and counting of wheat spikes and grains based on texture features and deep learning[J].,2024,(11):661.[doi:doi:10.3969/j.issn.1000-4440.2024.04.010]