[1]TIAN Y N, WANG S H, LI E, et al. MD-YOLO:multi-scale dense YOLO for small target pest detection[J]. Computers and Electronics in Agriculture,2023,213:108233.
<br/>[2]王吉芸,胡彦,杨春震,等. 云南省杧果主要病虫害发生与绿色防控措施概述[J]. 中国植保导刊,2023,43(11):60-64.
<br/>[3]廖娟,陶婉琰,臧英,等. 农作物病虫害遥感监测关键技术研究进展与展望[J]. 农业机械学报,2023,54(11):1-19.
<br/>[4]NGUGI L C, ABELWAHAB M, ABO-ZAHHAD M. Recent advances in image processing techniques for automated leaf pest and disease recognition-a review[J]. Information Processing in Agriculture,2021,8(1):27-51.
<br/>[5]PADOL P B, SAWANT S D. Fusion classification technique used to detect downy and Powdery Mildew grape leaf diseases[C]//IEEE. 2016 International Conference on Global Trends in Signal Processing,Information Computing and Communication. Jalgaon:IEEE,2016.
<br/>[6]高雄, 汤岩, 陈铁英, 等. 基于图像处理的甘蓝虫害识别研究[J]. 江苏农业科学,2017,45(23):235-238.
<br/>[7]李海, 李谊骏, 陈诗果, 等. 苹果树病虫害智能识别系统设计与实现[J]. 科学技术与工程,2021,21(25):10639-10645.
<br/>[8]DEY A K, SHARMA M, MESHRAM M R. Image processing based leaf rot disease,detection of betel vine (Piper betle L.)[J]. Procedia Computer Science,2016,85:748-754.
<br/>[9]TIAN Y N, YANG G D, WANG Z, et al. Instance segmentation of apple flowers using the improved mask R–CNN model[J]. Biosystems Engineering,2020,193:264-278.
<br/>[10]WANG X W, ZHAO Q Z, JIANG P, et al. LDS-YOLO:a lightweight small object detection method for dead trees from shelter forest[J]. Computers and Electronics in Agriculture,2022,198:107035.
<br/>[11]王铭慧,张怀清,樊江川,等. 基于深度学习网络实现番茄病虫害检测与识别[J]. 中国农业大学学报,2023,28(11):165-181.
<br/>[12]李就好,林乐坚,田凯,等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报,2020,36(12):179-185.
<br/>[13]WANG R J, JIAO L, XIE C J, et al. S-RPN:sampling-balanced region proposal network for small crop pest detection[J]. Computers and Electronics in Agriculture,2021,187:106290.
<br/>[14]宋中山,汪进,郑禄,等. 基于二值化的Faster R-CNN柑橘病虫害识别研究[J]. 中国农机化学报,2022,43(6):150-158.
<br/>[15]张善文,邵彧,齐国红,等. 基于多尺度注意力卷积网络的作物害虫检测[J]. 江苏农业学报,2021,37(3):579-588.
<br/>[16]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified,real-time object detection[C]//IEEE/CVF. 2016 IEEE conference on computer vision and pattern recognition. Las Vegas,NV:IEEE,2016.
<br/>[17]吕石磊,卢思华,李震,等. 基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法[J]. 农业工程学报,2019,35(17):205-214.
<br/>[18]储鑫,李祥,罗斌,等. 基于改进YOLOv4算法的番茄叶部病害识别方法[J]. 江苏农业学报,2023,39(5):1199-1208.
<br/>[19]周维,牛永真,王亚炜,等. 基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报,2022,38(3):685-695.
<br/>[20]骆润玫,殷惠莉,刘伟康,等. 基于YOLOv5-C的广佛手病虫害识别[J]. 华南农业大学学报,2023,44(1):151-160.
<br/>[21]XUE Z Y, XU R J, BAI D, et al. YOLO-tea:a tea disease detection model improved by YOLOv5[J]. Forests,2023,14(2):415.
<br/>[22]张友为,王鑫鑫,范晓飞. 基于深度学习的玉米和番茄病虫害检测技术研究进展[J]. 江苏农业科学,2024,52(10):10-20.
<br/>[23]吴子炜,夏芳,陆林峰,等. 基于改进YOLOv5的水稻主要害虫识别方法[J]. 江苏农业科学,2023,51(21):218-224.
<br/>[24]路阳,刘婉婷,林立媛,等. CNN与BiLSTM相结合的水稻病害识别新方法[J]. 江苏农业科学,2023,51(20):211-217.
<br/>[25]WU X P, ZHAN C, LAI Y K, et al. Ip102:a large-scale benchmark dataset for insect pest recognition[C]//IEEE/CVF. 2019 IEEE/CVF conference on computer vision and pattern recognition. Long Beach,CA:IEEE,2019.
<br/>[26]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE/CVF. 2018 IEEE conference on computer vision and pattern recognition. Salt Lake City,UT:IEEE,2018.
<br/>[27]HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//IEEE/CVF. 2021 IEEE/CVF conference on computer vision and pattern recognition. Nashville,TN:IEEE,2021.
<br/>[28]TAN M X, PANG R M, LE Q V. Efficientdet:Scalable and efficient object detection[C]//IEEE/CVF. 2020 IEEE/CVF conference on computer vision and pattern recognition. Seattle,WA:IEEE,2020.
<br/>[29]CHEN F X, ZHANG L X, KANG S Y, et al. Soft-NMS-enabled YOLOv5 with SIOU for small water surface floater detection in UAV-captured images[J]. Sustainability,2023,15(14):10751.