[1]梁雪,冯全,杨森,等.基于高光谱和卷积神经网络的大田马铃薯早疫病严重程度分级方法[J].江苏农业学报,2024,(10):1854-1862.[doi:doi:10.3969/j.issn.1000-4440.2024.10.010]
 LIANG Xue,FENG Quan,YANG Sen,et al.Severity classification of potato early blight in field based on hyperspectral and convolutional neural network[J].,2024,(10):1854-1862.[doi:doi:10.3969/j.issn.1000-4440.2024.10.010]
点击复制

基于高光谱和卷积神经网络的大田马铃薯早疫病严重程度分级方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年10期
页码:
1854-1862
栏目:
农业信息工程
出版日期:
2024-10-30

文章信息/Info

Title:
Severity classification of potato early blight in field based on hyperspectral and convolutional neural network
作者:
梁雪冯全杨森郭发旭
(甘肃农业大学机电工程学院,甘肃兰州730070)
Author(s):
LIANG XueFENG QuanYANG SenGUO Faxu
(College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)
关键词:
高光谱卷积神经网络马铃薯早疫病严重程度分级
Keywords:
hyperspectralconvolutional neural networkearly blight of potatoseverity classification
分类号:
S127;S532
DOI:
doi:10.3969/j.issn.1000-4440.2024.10.010
文献标志码:
A
摘要:
早疫病是影响马铃薯产量的主要病害之一,大田病害监测对控制早疫病发展有重要意义。使用配备高光谱成像仪的无人机(UAV)在田间尺度上获取患不同严重程度早疫病的马铃薯高光谱影像,分别提取并计算健康、轻度感染、中度感染和重度感染马铃薯的冠层光谱数据,通过光谱变换得到包括原始光谱在内的4种光谱,再进行特征波段选取,利用卷积神经网络(CNN)基于全波段和特征波段对马铃薯早疫病不同发病程度进行识别。结果表明,一阶微分光谱随机蛙跳(RF)降维后的特征波段+CNN模型的效果最好,总体识别准确率为91.18%,比一阶微分光谱随机蛙跳(RF)降维后的特征波段+反向传播网络(BP)总体准确率提高了1.96个百分点,平均精准率和平均召回率分别提高了3.00个百分点和2.00个百分点,平均F1得分提高了0.02;对不同感染等级的识别精度分别达到了95.0%、88.0%、83.0%和97.0%。
Abstract:
Early blight is one of the major diseases affecting potato yield, and field disease detection is important for controlling disease development. The unmanned aerial vehicle (UAV) equipped with a hyperspectral imager was used to acquire hyperspectral images of potatoes with different severity of early blight on the field scale, and the canopy spectral data of healthy, mildly infected, moderately infected, and severely infected potatoes were extracted and calculated, respectively. Four kinds of spectra including the original spectra were obtained by spectral transformation, and then the feature bands were selected. Convolutional neural network (CNN) was used to perform the identification of different degrees of potato early blight based on the full band and feature bands. The results showed that the feature bands after first-order differential spectra random leapfrog (RF) dimension reduction + CNN model had the best effect, and the overall recognition accuracy rate was 91.18%. Compared with the feature bands after first-order differential spectra RF dimension reduction + back propagation network (BP), the overall accuracy rate was increased by 1.96 percentage points, the average precision rate and the average recall rate were increased by 3.00 percentage points and 2.00 percentage points respectively, and the average F1 score was increased by 0.02. The identification accuracy of potato early blight with different infection levels reached 95.0%, 88.0%, 83.0% and 97.0%, respectively.

参考文献/References:

[1]徐进,朱杰华,杨艳丽,等. 中国马铃薯病虫害发生情况与农药使用现状[J]. 中国农业科学,2019,52(16):2800-2808.
[2]高玉林,徐进,刘宁,等. 我国马铃薯病虫害发生现状与防控策略[J]. 植物保护,2019,45(5):106-111.
[3]GOLD K M, TOWNSEND P A, CHLUS A, et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato[J]. Remote Sensing,2020,12(2):286.
[4]ZHANG J C, HUANG Y B, PU R L, et al. Monitoring plant diseases and pests through remote sensing technology: a review[J]. Computers and Electronics in Agriculture,2019,165:104943.
[5]张凝,杨贵军,赵春江,等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报,2021,25(1):403-422.
[6]黄双萍,齐龙,马旭,等. 基于高光谱成像的水稻穗瘟病害程度分级方法[J]. 农业工程学报,2015,31(1):212-219.
[7]BARBEDO J G A, TIBOLA C S, FERNANDES J M C. Detecting Fusarium head blight in wheat kernels using hyperspectral imaging[J]. Biosystems Engineering,2015,131:65-76.
[8]SIEDLISKA A, BARANOWSKI P, ZUBIK M, et al. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging[J]. Postharvest Biology and Technology,2018,139:115-126.
[9]JIN X, JIE L, WANG S, et al. Classifying wheat hyperspectral pixels of healthy heads and Fusarium head blight disease using a deep neural network in the wild field[J]. Remote Sensing,2018,10(3):395.
[10]雷雨,韩德俊,曾庆东,等. 基于高光谱成像技术的小麦条锈病病害程度分级方法[J]. 农业机械学报,2018,49(5):226-232.
[11]宋勇,陈兵,王琼,等. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报,2021,33(3):291-306.
[12]BOHNENKAMP D, BEHMANN J, MAHLEIN A K. In-field detection of yellow rust in wheat on the ground canopy and UAV scale[J]. Remote Sensing,2019,11(21):2495.
[13]兰玉彬,朱梓豪,邓小玲,等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报,2019,35(3):92-100.
[14]郭伟,朱耀辉,王慧芳,等. 基于无人机高光谱影像的冬小麦全蚀病监测模型研究[J]. 农业机械学报,2019,50(9):162-169.
[15]MA H Q, HUANG W J, DONG Y Y, et al. Using UAV-based hyperspectral imagery to detect winter wheat Fusarium head blight[J]. Remote Sensing,2021,13(15):3024.
[16]于涵. 基于图像和光谱技术的马铃薯早疫病智能诊断方法研究[D]. 大庆:黑龙江八一农垦大学,2023.
[17]唐翊. 基于光谱技术的便携式马铃薯晚疫病检测仪研制[D]. 咸阳:西北农林科技大学,2019.
[18]徐明珠,李梅,白志鹏,等. 马铃薯叶片早疫病的高光谱识别研究[J]. 农机化研究,2016,38(6):205-209.
[19]MENO L, ESCUREDO O, RODRGUEZ-FLORES M S, et al. Looking for a sustainable potato crop.Field assessment of early blight management[J]. Agricultural and Forest Meteorology,2021,308/309:108617.
[20]朱梦远,杨红兵,李志伟. 高光谱图像和叶绿素含量的水稻纹枯病早期检测识别[J]. 光谱学与光谱分析,2019,39(6):1898-1904.
[21]张婷婷,向莹莹,杨丽明,等. 高光谱技术无损检测单粒小麦种子生活力的特征波段筛选方法研究[J]. 光谱学与光谱分析,2019,39(5):1556-1562.

相似文献/References:

[1]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
 LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(10):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[2]张善文,谢泽奇,张晴晴.卷积神经网络在黄瓜叶部病害识别中的应用[J].江苏农业学报,2018,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
 ZHANG Shan-wen,XIE Ze-qi,ZHANG Qing-qing.Application research on convolutional neural network for cucumber leaf disease recognition[J].,2018,(10):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
[3]杨晋丹,杨涛,苗腾,等.基于卷积神经网络的草莓叶部白粉病病害识别[J].江苏农业学报,2018,(03):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
 YANG Jin-dan,YANG Tao,MIAO Teng,et al.Recognition of powdery mildew disease of strawberry leaves based on convolutional neural network[J].,2018,(10):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
[4]丁承君,刘强,田军强,等.信息物理系统事件驱动下的农业气象监测系统[J].江苏农业学报,2018,(04):825.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
 DING Cheng-jun,LIU Qiang,TIAN Jun-qiang,et al.Agro-meteorological monitoring system based on event-driven modeling of cyber-physical system[J].,2018,(10):825.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
[5]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
 WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(10):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[6]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
 ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(10):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[7]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
 LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(10):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
[8]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
 XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(10):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[9]孙云云,江朝晖,董伟,等.基于卷积神经网络和小样本的茶树病害图像识别[J].江苏农业学报,2019,(01):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
 SUN Yun-yun,JIANG Zhao-hui,DONG Wei,et al.Image recognition of tea plant disease based on convolutional neural network and small samples[J].,2019,(10):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
[10]王振,张善文,王献锋.基于改进全卷积神经网络的黄瓜叶部病斑分割方法[J].江苏农业学报,2019,(05):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
 WANG Zhen,ZHANG Shan-wen,WANG Xian-feng.Method for segmentation of cucumber leaf lesions based on improved full convolution neural network[J].,2019,(10):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]

备注/Memo

备注/Memo:
收稿日期:2023-12-27基金项目:国家自然科学基金项目(32160421、32201663);甘肃省教育厅产业支撑项目(2021CYZC-57)作者简介:梁雪(1999-),女,甘肃金昌人,硕士研究生,主要从事遥感图像处理研究。(E-mail)liangx@st.gsau.edu.cn通讯作者:冯全,(E-mail) fquan@gsau.edu.cn
更新日期/Last Update: 2024-11-21