参考文献/References:
[1]徐进,朱杰华,杨艳丽,等. 中国马铃薯病虫害发生情况与农药使用现状[J]. 中国农业科学,2019,52(16):2800-2808.
[2]高玉林,徐进,刘宁,等. 我国马铃薯病虫害发生现状与防控策略[J]. 植物保护,2019,45(5):106-111.
[3]GOLD K M, TOWNSEND P A, CHLUS A, et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato[J]. Remote Sensing,2020,12(2):286.
[4]ZHANG J C, HUANG Y B, PU R L, et al. Monitoring plant diseases and pests through remote sensing technology: a review[J]. Computers and Electronics in Agriculture,2019,165:104943.
[5]张凝,杨贵军,赵春江,等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报,2021,25(1):403-422.
[6]黄双萍,齐龙,马旭,等. 基于高光谱成像的水稻穗瘟病害程度分级方法[J]. 农业工程学报,2015,31(1):212-219.
[7]BARBEDO J G A, TIBOLA C S, FERNANDES J M C. Detecting Fusarium head blight in wheat kernels using hyperspectral imaging[J]. Biosystems Engineering,2015,131:65-76.
[8]SIEDLISKA A, BARANOWSKI P, ZUBIK M, et al. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging[J]. Postharvest Biology and Technology,2018,139:115-126.
[9]JIN X, JIE L, WANG S, et al. Classifying wheat hyperspectral pixels of healthy heads and Fusarium head blight disease using a deep neural network in the wild field[J]. Remote Sensing,2018,10(3):395.
[10]雷雨,韩德俊,曾庆东,等. 基于高光谱成像技术的小麦条锈病病害程度分级方法[J]. 农业机械学报,2018,49(5):226-232.
[11]宋勇,陈兵,王琼,等. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报,2021,33(3):291-306.
[12]BOHNENKAMP D, BEHMANN J, MAHLEIN A K. In-field detection of yellow rust in wheat on the ground canopy and UAV scale[J]. Remote Sensing,2019,11(21):2495.
[13]兰玉彬,朱梓豪,邓小玲,等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报,2019,35(3):92-100.
[14]郭伟,朱耀辉,王慧芳,等. 基于无人机高光谱影像的冬小麦全蚀病监测模型研究[J]. 农业机械学报,2019,50(9):162-169.
[15]MA H Q, HUANG W J, DONG Y Y, et al. Using UAV-based hyperspectral imagery to detect winter wheat Fusarium head blight[J]. Remote Sensing,2021,13(15):3024.
[16]于涵. 基于图像和光谱技术的马铃薯早疫病智能诊断方法研究[D]. 大庆:黑龙江八一农垦大学,2023.
[17]唐翊. 基于光谱技术的便携式马铃薯晚疫病检测仪研制[D]. 咸阳:西北农林科技大学,2019.
[18]徐明珠,李梅,白志鹏,等. 马铃薯叶片早疫病的高光谱识别研究[J]. 农机化研究,2016,38(6):205-209.
[19]MENO L, ESCUREDO O, RODRGUEZ-FLORES M S, et al. Looking for a sustainable potato crop.Field assessment of early blight management[J]. Agricultural and Forest Meteorology,2021,308/309:108617.
[20]朱梦远,杨红兵,李志伟. 高光谱图像和叶绿素含量的水稻纹枯病早期检测识别[J]. 光谱学与光谱分析,2019,39(6):1898-1904.
[21]张婷婷,向莹莹,杨丽明,等. 高光谱技术无损检测单粒小麦种子生活力的特征波段筛选方法研究[J]. 光谱学与光谱分析,2019,39(5):1556-1562.
相似文献/References:
[1]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(10):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[2]张善文,谢泽奇,张晴晴.卷积神经网络在黄瓜叶部病害识别中的应用[J].江苏农业学报,2018,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
ZHANG Shan-wen,XIE Ze-qi,ZHANG Qing-qing.Application research on convolutional neural network for cucumber leaf disease recognition[J].,2018,(10):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
[3]杨晋丹,杨涛,苗腾,等.基于卷积神经网络的草莓叶部白粉病病害识别[J].江苏农业学报,2018,(03):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
YANG Jin-dan,YANG Tao,MIAO Teng,et al.Recognition of powdery mildew disease of strawberry leaves based on convolutional neural network[J].,2018,(10):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
[4]丁承君,刘强,田军强,等.信息物理系统事件驱动下的农业气象监测系统[J].江苏农业学报,2018,(04):825.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
DING Cheng-jun,LIU Qiang,TIAN Jun-qiang,et al.Agro-meteorological monitoring system based on event-driven modeling of cyber-physical system[J].,2018,(10):825.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
[5]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(10):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[6]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(10):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[7]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(10):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
[8]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(10):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[9]孙云云,江朝晖,董伟,等.基于卷积神经网络和小样本的茶树病害图像识别[J].江苏农业学报,2019,(01):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
SUN Yun-yun,JIANG Zhao-hui,DONG Wei,et al.Image recognition of tea plant disease based on convolutional neural network and small samples[J].,2019,(10):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
[10]王振,张善文,王献锋.基于改进全卷积神经网络的黄瓜叶部病斑分割方法[J].江苏农业学报,2019,(05):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
WANG Zhen,ZHANG Shan-wen,WANG Xian-feng.Method for segmentation of cucumber leaf lesions based on improved full convolution neural network[J].,2019,(10):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]