[1]董玉兵,董青君,李传哲,等.氮肥调控对江淮地区冬闲田毛叶苕子固氮特征及固氮酶活性的影响及机制[J].江苏农业学报,2024,(10):1844-1853.[doi:doi:10.3969/j.issn.1000-4440.2024.10.009]
 DONG Yubing,DONG Qingjun,LI Chuanzhe,et al.Effect and and mechanisms of nitrogen fertilizer regulation on the nitrogen fixation characteristics and nitrogenase activity of hairy vetch in winter fallow fields of the Yangtze River-Huaihe region[J].,2024,(10):1844-1853.[doi:doi:10.3969/j.issn.1000-4440.2024.10.009]
点击复制

氮肥调控对江淮地区冬闲田毛叶苕子固氮特征及固氮酶活性的影响及机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年10期
页码:
1844-1853
栏目:
耕作栽培·资源环境
出版日期:
2024-10-30

文章信息/Info

Title:
Effect and and mechanisms of nitrogen fertilizer regulation on the nitrogen fixation characteristics and nitrogenase activity of hairy vetch in winter fallow fields of the Yangtze River-Huaihe region
作者:
董玉兵12董青君1李传哲1李卫红1张苗1邵文奇1孙春梅1陈川1
(1.江苏徐淮地区淮阴农业科学研究所,江苏淮安223001;2.南京农业大学资源与环境科学学院,江苏南京210095)
Author(s):
DONG Yubing12DONG Qingjun1LI Chuanzhe1LI Weihong1ZHANG Miao1SHAO Wenqi1SUN Chunmei1CHEN Chuan1
(1.Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an 223001, China;2.College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
毛叶苕子氮肥调控固氮酶活性模型
Keywords:
hairy vetchnitrogen fertilizer regulationnitrogenase activitymodel
分类号:
S158
DOI:
doi:10.3969/j.issn.1000-4440.2024.10.009
文献标志码:
A
摘要:
冬闲田种植绿肥作物已经成为提升耕地质量的一种重要措施。为明确不同氮肥水平对毛叶苕子固氮特征的影响,本研究通过2年田间定位试验,设置不施氮肥对照(CK)、50 kg/hm2(N1)、100 kg/hm2(N2)3个施氮水平,测定毛叶苕子关键生育期的生物量、根瘤生物量、氮吸收量及固氮酶活性等指标,明确氮肥调控措施对毛叶苕子固氮能力的影响及机制。结果表明:与CK相比,2个生长季N1处理和N2处理毛叶苕子生物量、氮吸收量和共生固氮量都有显著增加。N1处理的共生固氮率与CK无显著差异,而N2处理的共生固氮率下降明显。N1处理的共生固氮量显著高于N2处理。随着施氮量的增加,现蕾期和盛花期固氮酶活性呈增加趋势,N2处理的固氮酶活性比CK增加42.8%~76.1%。3个处理的根瘤生物量和根瘤固氮酶活性均在盛花期达到最大值。SQRT模型可较好拟合毛叶苕子固氮酶活性随时间的变化特征,不同处理下拟合方程决定系数(R2)均≥0.87。与CK相比,N1和N2处理的固氮酶活性开始时间(Dmin)明显推迟,固氮酶活性峰值出现时间(Dopt)提前。总之,N1处理(50 kg/hm2)能够显著增加植株生物量、共生固氮量及氮吸收量,可以作为试验地区冬闲田种植毛叶苕子的推荐施氮量。本研究结果可为江淮地区冬闲田的合理培肥提供依据和支撑。
Abstract:
Planting green manure crops in winter fallow field has become an important measure to improve the quality of cultivated land. In order to clarify the effects of different nitrogen levels on the nitrogen fixation characteristics of hairy vetch, a two-year field positioning experiment was conducted to determine the effects of nitrogen regulation measures and mechanism on the nitrogen fixation ability of hairy vetch by setting three nitrogen levels of no nitrogen control (CK), 50 kg/hm2 (N1) and 100 kg/hm2 (N2), and by measuring the biomass, root nodule biomass, nitrogen uptake and nitrogenase activity of hairy vetch at the key growth stages. The results showed that compared with CK, the biomass, nitrogen uptake and symbiotic nitrogen fixation of hairy vetch under N1 and N2 treatments were significantly increased in the two growing seasons. The symbiotic nitrogen fixation rate of N1 treatment was not significantly different from that of CK, while the symbiotic nitrogen fixation rate of N2 treatment decreased significantly. The symbiotic nitrogen fixation of N1 treatment was significantly higher than that of N2 treatment. With the increase of nitrogen application rate, the nitrogenase activity in squaring stage and full-bloom stage showed an increasing trend, and the nitrogenase activity of N2 treatment increased by 42.8%-76.1% compared with CK. The nodule biomass and nitrogenase activity of the three treatments reached the maximum at the full-bloom stage. The SQRT model could well fit the variation characteristics of nitrogenase activity of hairy vetch with time, and the determination coefficients (R2) of the fitting equations under different treatments were all ≥ 0.87. Compared with CK, the start time (Dmin) of nitrogenase activity in N1 and N2 treatments was significantly delayed, and the peak time (Dopt) of nitrogenase activity was advanced. In conclusion, N1 treatment (50 kg/hm2) could significantly increase plant biomass, symbiotic nitrogen fixation and nitrogen uptake, which could be used as the recommended nitrogen application rate for planting hairy vetch in winter fallow fields of the experimental area. The results of this study provide a basis and support for the rational fertilization of winter fallow fields in the Yangtze River-Huaihe region.

参考文献/References:

[1]LIANG H, LI S, ZHANG L, et al. Long-term green manuring enhances crop N uptake and reduces N losses in rice production system[J]. Soil and Tillage Research,2022,220:105369.
[2]张成兰,刘春增,李本银,等. 不同施肥条件下毛叶苕子的腐解及养分释放特征[J]. 应用生态学报,2019,30(7):2275-2283.
[3]HUANG S, ZENG Y J, WU J F, et al. Effect of crop residue retention on rice yield in China:a meta-analysis[J]. Field Crops Research,2013,154:188-194.
[4]LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis[J]. Global Change Biology,2014,20(5):1366-1381.
[5]ZHANG D B, YAO P W, ZHAO N, et al. Contribution of green manure legumes to nitrogen dynamics in traditional winter wheat cropping system in the Loess Plateau of China[J]. European Journal of Agronomy,2016,72:47-55.
[6]陈静蕊,秦文婧,王少先,等. 化肥减量配合紫云英还田对双季稻产量及氮肥利用率的影响[J]. 水土保持学报,2019,33(6):280-287.
[7]GUO K, YANG J, YU N, et al. Biological nitrogen fixation in cereal crops:progress,strategies,and perspectives[J]. Plant Communications,2023,4(2):100499.
[8]杨建波,彭东海,覃刘东,等. 低氮条件下间作大豆对宿根蔗内生固氮菌固氮酶活性、氮素积累及产量的影响[J]. 南方农业学报,2015,46(2):210-215.
[9]柯丹霞,徐勤朕,杨娜,等. 高氮抑制豆科植物结瘤固氮机制研究进展[J]. 生物技术通报,2019,35(10):40-45.
[10]常单娜,刘春增,李本银,等. 翻压紫云英对稻田土壤还原物质变化特征及温室气体排放的影响[J]. 草业学报,2018,27(12):133-144.
[11]高嵩涓,周国朋,曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制[J]. 植物营养与肥料学报,2020,26(12):2115-2126.
[12]韩可,孙彦,张昆,等. 接种不同根瘤菌对紫花苜蓿生产力的影响[J]. 草地学报,2018,26(3):639-644.
[13]张军倩,董玉兵,焦颖等. 氮肥调控对紫云英-水稻轮作系统结瘤固氮特征及生产力的影响 [J]. 植物营养与肥料学报,2024,30(1):1-11.
[14]高丽敏,苏晶,田倩,等. 施氮对不同水分条件下紫花苜蓿氮素吸收及根系固氮酶活性的影响[J]. 草业学报,2020,29(3):130-136.
[15]DONG Y, ZHANG J, XU X, et al. Symbiotic nitrogen fixation enhanced crop production and mitigated nitrous oxide emissions from paddy crops[J]. Field Crops Research,2024,307:109261.
[16]刘蕊,常单娜,高嵩涓,等. 西北小麦与豆科绿肥间作体系箭筈豌豆和毛叶苕子生物固氮效率及氮素转移特性[J]. 植物营养与肥料学报,2020,26(12):2184-2194.
[17]张久东,包兴国,曹卫东,等. 长期施用绿肥减施化肥对毛叶苕子产草量和土壤肥力的影响[J]. 中国土壤与肥料,2017(6):66-70.
[18]CHALK P M, HE J, PEOPLES M B, et al. 15N2 as a tracer of biological N2 fixation:a 75-year retrospective[J]. Soil Biology and Biochemistry,2017,106:36-50.
[19]BELLENGER J P, DARNAJOUX R, ZHANG X, et al. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems:a review[J]. Biogeochemistry,2020,149(1):53-73.
[20]FAN X, YUAN G, LIU W. Response strategies of N-fixation by epiphytic bryophytes to water change in a subtropical montane cloud forest[J]. Ecological Indicators,2022,135:108527.
[21]BAHULIKAR R A, CHALUVADI S R, TORRES-JEREZ I, et al. Nitrogen fertilization reduces nitrogen fixation activity of diverse diazotrophs in switchgrass roots[J]. Phytobiomes Journal,2019,5(1):80-87.
[22]DOVRAT G, BAKHSHIAN H, MASCI T, et al. The nitrogen economic spectrum of legume stoichiometry and fixation strategy[J]. New Phytologist,2020,227(2):365-375.
[23]黄晓财,胡浩南,李欣欣,等. 氮、磷、钾胁迫对甘蔗生长及固氮酶活性的影响[J]. 甘蔗糖业,2019(3):23-29.
[24]刘晓静,蒯佳林,李文卿,等. 硝态氮与铵态氮对紫花苜蓿根系生长及结瘤固氮的影响[J]. 甘肃农业大学学报,2011,46(5):106-110.
[25]夏玄. 氮素营养对大豆结瘤固氮及相关调控物质影响的研究[D]. 哈尔滨:东北农业大学,2018.
[26]鲍士旦,江荣风,杨超光,等. 土壤农化分析[M]. 北京:中国农业出版社,2000.
[27]TAYLOR A E, GIGUERE A T, ZOEBELEIN C M, et al. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria[J]. ISME J,2017,11(4):896-908.
[28]巨晓棠. 理论施氮量的改进及验证——兼论确定作物氮肥推荐量的方法[J]. 土壤学报,2015,52(2):249-261.
[29]程会丹,鲁艳红,聂军,等. 减量化肥配施紫云英对稻田土壤碳、氮的影响[J]. 农业环境科学学报,2020,39(6):1259-1270.
[30]刘春增,常单娜,李本银,等. 种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响[J]. 土壤学报,2017,54(3):657-669.
[31]TAYLOR B N, MENGE D N L. Light,nitrogen supply,and neighboring plants dictate costs and benefits of nitrogen fixation for seedlings of a tropical nitrogen-fixing tree[J]. New Phytologist,2021,231(5):1758-1769.
[32]冯博政,刘晓静,郝凤,等. 外源氮对紫花苜蓿固氮酶活性和酰脲含量的影响及其相关关系研究[J]. 草地学报,2016,24(2):351-357.
[33]TAYLOR B N, MENGE D N L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen[J]. Nature Plants,2018,4(9):655-661.
[34]王晶,许修宏. 不同根瘤菌、大豆品种、土壤类型对固氮酶活性的影响[J]. 东北农业大学学报,2008,39(9):36-39.
[35]于晓波,苏本营,龚万灼,等. 玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响[J]. 中国农业科学,2014,47(9):1743-1753.
[36]刘春增,吕玉虎,李本银,等. 不同播期对紫云英“信紫1号”生长状况、产量及养分积累的影响[J]. 中国土壤与肥料,2018(1):127-133.
[37]DOVRAT G, MASCI T, BAKHSHIAN H, et al. Drought-adapted plants dramatically downregulate dinitrogen fixation:evidences from Mediterranean legume shrubs[J]. Journal of Ecology,2018,106(4):1534-1544.
[38]焦银山. 苦参根瘤菌多样性及苦参与各种根瘤菌共生关系混杂性的分子机制研究[D]. 北京:中国农业大学,2018.
[39]NIEWIADOMSKA A, SULEWSKA H, WOLNA-MARUWKA A, et al. The influence of biostimulants and foliar fertilisers on the process of biological nitrogen fixation and the level of soil biochemical activity in soybean (Glycine max L.) cultivation[J]. Applied Ecology and Environmental Research,2019,17(5):12649-12666.
[40]田艳洪,刘元英,张文钊,等. 不同时期施用氮肥对大豆根瘤固氮酶活性及产量的影响[J]. 东北农业大学学报,2008,39(5):15-19.
[41]MCCULLOCH L A, PORDER S. Light fuels while nitrogen suppresses symbiotic nitrogen fixation hotspots in neotropical canopy gap seedlings[J]. New Phytologist,2021,231(5):1734-1745.

备注/Memo

备注/Memo:
收稿日期:2023-12-25基金项目:淮安市重点研发计划(乡村振兴类)项目(HAN202313);国家自然科学基金项目(32001213);淮安市农业科学院科研发展基金(HNY202027)作者简介:董玉兵(1992-),男,山东梁山人,博士研究生,助理研究员,主要从事土壤肥料与绿肥研究。 (E-mail)dongyubing@jaas.ac.cn通讯作者:孙春梅,(E-mail)20031201@jaas.ac.cn;陈川,(E-mail)19921201@jaas.ac.cn
更新日期/Last Update: 2024-11-21