参考文献/References:
[1]丁燕,范紫云,周欢,等. 盐胁迫对菠萝蜜幼苗生长及生理特性的影响[J]. 东南园艺,2021,9(5):31-40.
[2]WEI L J, ZHANG J, WEI S H, et al. Nitric oxide enhanced salt stress tolerance in tomato seedlings,involving phytohormone equilibrium and photosynthesis[J]. International Journal of Molecular Sciences,2022,23(9):4539.
[3]KUMAR S, ABASS AHANGER M, ALSHAYA H, et al. Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in Capsicum annuum[J]. Saudi Journal of Biological Sciences,2022,29(3):1337-1347.
[4]RAJABI DEHNAVI A, ZAHEDI M, LUDWICZAK A, et al. Foliar application of salicylic acid improves salt tolerance of Sorghum (Sorghum bicolor (L.) Moench)[J]. Plants,2022,11(3):368.
[5]沙汉景,胡文成,贾琰,等. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响[J]. 作物学报,2017,43(11):1677-1688.
[6]BAKIR A G, BOLAT I, KORKMAZ K, et al. Exogenous nitric oxide and silicon applications alleviate water stress in apricots[J]. Life,2022,12(9):1454.
[7]JANGRA M, DEVI S, SATPAL, et al. Amelioration effect of salicylic acid under salt stress in Sorghum bicolor L.[J]. Applied Biochemistry and Biotechnology,2022,194(10):4400-4423.
[8]YAO X, ZHOU M L, RUAN J J, et al. Physiological and biochemical regulation mechanism of exogenous hydrogen peroxide in alleviating NaCl stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) gaertn)[J]. International Journal of Molecular Sciences,2022,23(18):10698.
[9]吕广明,王艳杰,刘瑞,等. 纳米氧化铈的抗氧化生物应用[J]. 中国科学:化学,2013,43(10):1309-1321.
[10]LPEZ-MORENO M L, DE LA ROSA G, HERNNDEZ-VIEZCAS J A, et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants[J]. Environmental Science & Technology,2010,44(19):7315-7320.
[11]PRAKASH V, PERALTA-VIDEA J, TRIPATHI D K, et al. Recent insights into the impact,fate and transport of cerium oxide nanoparticles in the plant-soil continuum[J]. Ecotoxicology and Environmental Safety,2021,221:112403.
[12]ROSSI L, ZHANG W L, LOMBARDINI L, et al. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.[J]. Environmental Pollution,2016,219:28-36.
[13]GOHARI G, ZAREEI E, ROSTAMI H, et al. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions[J]. Ecotoxicology and Environmental Safety,2021,220:112402.
[14]CHEN L L, PENG Y Q, ZHU L, et al. CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system[J]. Chemosphere,2022,299:134474.
[15]ZHAO L J, PENG B, HERNANDEZ-VIEZCAS J A, et al. Stress response and tolerance of Zea mays to CeO2 nanoparticles:cross talk among H2O2,heat shock protein,and lipid peroxidation[J]. ACS Nano,2012,6(11):9615-9622.
[16]LI J X, MU Q L, DU Y L, et al. Growth and photosynthetic inhibition of cerium oxide nanoparticles on soybean (Glycine max)[J]. Bulletin of Environmental Contamination and Toxicology,2020,105(1):119-126.
[17]AMBREEN S, ATHAR H U R, KHAN A, et al. Seed priming with proline improved photosystem Ⅱ efficiency and growth of wheat (Triticum aestivum L.)[J]. BMC Plant Biology,2021,21(1):502.
[18]KHAN M N, LI Y H, KHAN Z, et al. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities[J]. Journal of Nanobiotechnology,2021,19(1):276.
[19]KHAN M N, LI Y H, FU C C, et al. CeO2 nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance[J]. Global Challenges,2022,6(7):2200025.
[20]MNAHONCKOV E, VERGUN O, GRYGORIEVA O, et al. Evaluation of the antioxidant potential of Capsicum annuum L.,C. baccatum L. and C. chinense Jacq. cultivars[J]. Acta Scientiarum Polonorum-Technologia Alimentaria,2021,20(2):223-236.
[21]MA J, WANG Y, WANG L Y, et al. Transcriptomic analysis reveals the mechanism of the alleviation of salt stress by salicylic acid in pepper (Capsicum annuum L.)[J]. Molecular Biology Reports,2023,50(4):3593-3606.
[22]魏茜雅,林欣琪,梁腊梅,等. 褪黑素引发处理提高朝天椒种子萌发及幼苗耐盐性的生理机制[J]. 江苏农业学报,2022,38(6):1637-1647.
[23]贾璐绮,向春阳,陈佩静,等. 水杨酸对盐胁迫下线型辣椒幼苗生理特性的影响[J]. 天津农学院学报,2020,27(3):39-42,48.
[24]赵恺,辛文春,何冰纾. 外源BR处理对碱性盐胁迫下辣椒生长的影响[J]. 安徽农业科学,2020,48(14):29-31.
[25]NEWKIRK G M, WU H H, SANTANA I, et al. Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles[J]. Journal of Visualized Experiments,2018(138):58373.
[26]MARTHANDAN V, GEETHA R, KUMUTHA K, et al. Seed priming:a feasible strategy to enhance drought tolerance in crop plants[J]. International Journal of Molecular Sciences,2020,21(21):8258.
[27]王贵余. 化学药剂处理对老化辣椒种子活力的影响[J]. 中国种业,2005(8):42-43.
[28]JI X Y, TANG J L, ZHANG J P. Effects of salt stress on the morphology,growth and physiological parameters of Juglans microcarpa L. seedlings[J]. Plants,2022,11(18):2381.
[29]高俊风. 植物生物学试验指导[M]. 北京: 高等教育出版社, 2006.
[30]张露. 植物生长促进剂对玉米生长的影响及抗逆效应研究[D]. 武汉:华中农业大学,2017:3-27.
[31]NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology,1981,22(5):867-880.
[32]BASIT F, BHAT J A, ULHASSAN Z, et al. Seed priming with spermine mitigates chromium stress in rice by modifying the ion homeostasis,cellular ultrastructure and phytohormones balance[J]. Antioxidants,2022,11(9):1704.
[33]DJANAGUIRAMAN M, NAIR R, GIRALDO J P, et al. Cerium oxide nanoparticles decrease drought-induced oxidative damage in Sorghum leading to higher photosynthesis and grain yield[J]. ACS Omega,2018,3(10):14406-14416.
[34]AN J, HU P G, LI F J, et al. Emerging investigator series:molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles[J]. Environmental Science:Nano,2020,7(8):2214-2228.
[35]EL-BADRI A M A, BATOOL M, MOHAMED I A A, et al. Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.)[J]. Plant Physiology and Biochemistry,2021,166:376-392.
[36]鲁克嵩,闫磊,侯佳玉,等. 盐胁迫下外源脯氨酸对油菜Na+/K+平衡、生长及抗氧化系统的影响[J]. 华中农业大学学报,2023,42(5):141-148.
[37]谭杉杉,仇亮,段奥其,等. 次氯酸钠处理种子对芹菜幼苗可溶性糖含量及相关基因表达的影响[J]. 植物生理学报,2022,58(1):165-172.
[38]TIAN T, WANG J G, WANG H J, et al. Nitrogen application alleviates salt stress by enhancing osmotic balance,ROS scavenging,and photosynthesis of rapeseed seedlings (Brassica napus)[J]. Plant Signaling & Behavior,2022,17(1):2081419.
[39]LI J, XIE J M, YU J H, et al. Melatonin enhanced low-temperature combined with low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating root growth,antioxidant defense system,and osmotic adjustment[J]. Frontiers in Plant Science,2022,13:998293.
[40]LIU J H, LI G J, CHEN L L, et al. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio[J]. Journal of Nanobiotechnology,2021,19(1):153.
[41]ZHANG H X, ZHU W C, FENG X H, et al. Transcription factor CaSBP12 negatively regulates salt stress tolerance in pepper (Capsicum annuum L.)[J]. International Journal of Molecular Sciences,2020,21(2):444.
[42]YAO Y X, JIA L, CHENG Y, et al. Evolutionary origin of the carotenoid cleavage oxygenase family in plants and expression of pepper genes in response to abiotic stresses[J]. Frontiers in Plant Science,2022,12:792832.
[43]GAI W X, MA X, QIAO Y M, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.):CabZIP25 positively modulates the salt tolerance[J]. Frontiers in Plant Science,2020,11:139.
[44]AHMAD YASIN N, AKRAM W, KHAN W U, et al. Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L.[J]. Environmental Science and Pollution Research,2018,25(23):23236-23250.
[45]WU X X, REN Y, JIANG H L, et al. Genome-wide identification and transcriptional expression analysis of annexin genes in Capsicum annuum and characterization of CaAnn9 in salt tolerance[J]. International Journal of Molecular Sciences,2021,22(16):8667.