[1]秦中维,魏茜雅,梁腊梅,等.氧化铈纳米颗粒引发处理对盐胁迫下辣椒植株生长、生理特性及相关耐盐基因表达的影响[J].江苏农业学报,2024,(09):1719-1730.[doi:doi:10.3969/j.issn.1000-4440.2024.09.016]
 QIN Zhongwei,WEI Qianya,LIANG Lamei,et al.Effects of cerium oxide nanoparticles seed priming on growth and physiological characteristics, and expression of stress resistance genes in pepper plants under salt stress[J].,2024,(09):1719-1730.[doi:doi:10.3969/j.issn.1000-4440.2024.09.016]
点击复制

氧化铈纳米颗粒引发处理对盐胁迫下辣椒植株生长、生理特性及相关耐盐基因表达的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年09期
页码:
1719-1730
栏目:
园艺
出版日期:
2024-09-30

文章信息/Info

Title:
Effects of cerium oxide nanoparticles seed priming on growth and physiological characteristics, and expression of stress resistance genes in pepper plants under salt stress
作者:
秦中维魏茜雅梁腊梅林欣琪李映志
(广东海洋大学滨海农业学院,广东湛江524088)
Author(s):
QIN ZhongweiWEI QianyaLIANG LameiLIN XinqiLI Yingzhi
(College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China)
关键词:
氧化铈纳米颗粒种子引发盐胁迫辣椒
Keywords:
cerium oxide nanoparticlesseed primingsalt stresspepper
分类号:
S641.301
DOI:
doi:10.3969/j.issn.1000-4440.2024.09.016
文献标志码:
A
摘要:
辣椒是一种对盐胁迫敏感的经济作物。已有研究发现,用氧化铈纳米颗粒(CeO2NPs)对植物种子进行引发处理可以提高植物的耐盐能力。本研究旨在分析用不同浓度(0 mmol/L、0.05 mmol/L、0.10 mmol/L、0.20 mmol/L、0.30 mmol/L、0.40 mmol/L和0.50 mmol/L)CeO2NPs对辣椒种子进行引发处理后,辣椒植株在盐胁迫下的生长、抗逆生理及叶绿素荧光参数、矿质元素含量及相关耐盐基因的表达情况。结果表明,用CeO2NPs对辣椒种子进行引发处理可以减轻盐胁迫造成的辣椒植株生长受阻,提高盐胁迫下辣椒植株的总鲜重、总干重,CeO2NPs的最佳使用浓度为0.05 mmol/L。用适宜浓度的CeO2NPs对辣椒种子进行引发处理提高了盐胁迫下辣椒叶片中相关抗氧化酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化氢酶(APX)]的活性、渗透调节物质(可溶性糖、可溶性蛋白质和脯氨酸)含量,降低了丙二醛含量。此外,用适宜浓度的CeO2NPs对辣椒种子进行引发处理上调了辣椒叶片中5个耐盐相关基因(CaAnn9、CaNCED3、CabZIP25、CaSBP12和CaOSM1)的相对表达量。综上,用适宜浓度的CeO2NPs对辣椒种子进行引发处理通过促进辣椒叶片抗氧化酶系统的建立与渗透调节物质的积累来维持盐胁迫下辣椒叶片的氧化还原稳态与渗透平衡,同时通过上调辣椒叶片中相关耐盐基因的相对表达量来增强辣椒植株对盐胁迫的耐受性。
Abstract:
Capsicum annuum L. is an economic crop sensitive to salinization. Seed priming treatment with cerium oxide nanoparticles (CeO2NPs) can improve the salinization tolerance of plants. In this study, we investigated the effects of seed priming treatment with different concentrations (including 0 mmol/L, 0.05 mmol/L, 0.10 mmol/L, 0.20 mmol/L, 0.30 mmol/L, 0.40 mmol/L, and 0.50 mmol/L) of CeO2NPs on growth, stress resistance physiology, chlorophyll fluorescence parameters, mineral element content and expression of salinization-tolerant genes of C. annuum seedlings under salt stress. Our results showed that seed priming treatment with CeO2NPs could alleviate the growth inhibition of pepper plants caused by salt stress, and increase the total fresh and dry weight under salt stress. The optimum concentration of CeO2NPs was 0.05 mmol/L. Seed priming treatment with appropriate concentration of CeO2NPs increased the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate catalase (APX) and the contents of osmotic adjustment substances (soluble sugar, soluble protein and proline), but decreased the content of malondialdehyde (MDA) in the leaves of C. annuum seedlings under salt stress. In addition, seed priming treatment with appropriate concentration of CeO2NPs enhanced the relative expression levels of five related salinization-stress resistance genes (CaAnn9, CaNCED3, CabZIP25, CaSBP12 and CaOSM1). In summary, the priming treatment of pepper seeds with appropriate concentration of CeO2NPs can maintain the redox homeostasis and osmotic balance under salt stress by promoting the establishment of antioxidant enzyme system and the accumulation of osmotic adjustment substances in pepper leaves, and enhance the tolerance of pepper plants to salt stress by up-regulating the expression of related salt-tolerant genes in pepper leaves.

参考文献/References:

[1]丁燕,范紫云,周欢,等. 盐胁迫对菠萝蜜幼苗生长及生理特性的影响[J]. 东南园艺,2021,9(5):31-40.
[2]WEI L J, ZHANG J, WEI S H, et al. Nitric oxide enhanced salt stress tolerance in tomato seedlings,involving phytohormone equilibrium and photosynthesis[J]. International Journal of Molecular Sciences,2022,23(9):4539.
[3]KUMAR S, ABASS AHANGER M, ALSHAYA H, et al. Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in Capsicum annuum[J]. Saudi Journal of Biological Sciences,2022,29(3):1337-1347.
[4]RAJABI DEHNAVI A, ZAHEDI M, LUDWICZAK A, et al. Foliar application of salicylic acid improves salt tolerance of Sorghum (Sorghum bicolor (L.) Moench)[J]. Plants,2022,11(3):368.
[5]沙汉景,胡文成,贾琰,等. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响[J]. 作物学报,2017,43(11):1677-1688.
[6]BAKIR A G, BOLAT I, KORKMAZ K, et al. Exogenous nitric oxide and silicon applications alleviate water stress in apricots[J]. Life,2022,12(9):1454.
[7]JANGRA M, DEVI S, SATPAL, et al. Amelioration effect of salicylic acid under salt stress in Sorghum bicolor L.[J]. Applied Biochemistry and Biotechnology,2022,194(10):4400-4423.
[8]YAO X, ZHOU M L, RUAN J J, et al. Physiological and biochemical regulation mechanism of exogenous hydrogen peroxide in alleviating NaCl stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) gaertn)[J]. International Journal of Molecular Sciences,2022,23(18):10698.
[9]吕广明,王艳杰,刘瑞,等. 纳米氧化铈的抗氧化生物应用[J]. 中国科学:化学,2013,43(10):1309-1321.
[10]LPEZ-MORENO M L, DE LA ROSA G, HERNNDEZ-VIEZCAS J A, et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants[J]. Environmental Science & Technology,2010,44(19):7315-7320.
[11]PRAKASH V, PERALTA-VIDEA J, TRIPATHI D K, et al. Recent insights into the impact,fate and transport of cerium oxide nanoparticles in the plant-soil continuum[J]. Ecotoxicology and Environmental Safety,2021,221:112403.
[12]ROSSI L, ZHANG W L, LOMBARDINI L, et al. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.[J]. Environmental Pollution,2016,219:28-36.
[13]GOHARI G, ZAREEI E, ROSTAMI H, et al. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions[J]. Ecotoxicology and Environmental Safety,2021,220:112402.
[14]CHEN L L, PENG Y Q, ZHU L, et al. CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system[J]. Chemosphere,2022,299:134474.
[15]ZHAO L J, PENG B, HERNANDEZ-VIEZCAS J A, et al. Stress response and tolerance of Zea mays to CeO2 nanoparticles:cross talk among H2O2,heat shock protein,and lipid peroxidation[J]. ACS Nano,2012,6(11):9615-9622.
[16]LI J X, MU Q L, DU Y L, et al. Growth and photosynthetic inhibition of cerium oxide nanoparticles on soybean (Glycine max)[J]. Bulletin of Environmental Contamination and Toxicology,2020,105(1):119-126.
[17]AMBREEN S, ATHAR H U R, KHAN A, et al. Seed priming with proline improved photosystem Ⅱ efficiency and growth of wheat (Triticum aestivum L.)[J]. BMC Plant Biology,2021,21(1):502.
[18]KHAN M N, LI Y H, KHAN Z, et al. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities[J]. Journal of Nanobiotechnology,2021,19(1):276.
[19]KHAN M N, LI Y H, FU C C, et al. CeO2 nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance[J]. Global Challenges,2022,6(7):2200025.
[20]MNAHONCKOV E, VERGUN O, GRYGORIEVA O, et al. Evaluation of the antioxidant potential of Capsicum annuum L.,C. baccatum L. and C. chinense Jacq. cultivars[J]. Acta Scientiarum Polonorum-Technologia Alimentaria,2021,20(2):223-236.
[21]MA J, WANG Y, WANG L Y, et al. Transcriptomic analysis reveals the mechanism of the alleviation of salt stress by salicylic acid in pepper (Capsicum annuum L.)[J]. Molecular Biology Reports,2023,50(4):3593-3606.
[22]魏茜雅,林欣琪,梁腊梅,等. 褪黑素引发处理提高朝天椒种子萌发及幼苗耐盐性的生理机制[J]. 江苏农业学报,2022,38(6):1637-1647.
[23]贾璐绮,向春阳,陈佩静,等. 水杨酸对盐胁迫下线型辣椒幼苗生理特性的影响[J]. 天津农学院学报,2020,27(3):39-42,48.
[24]赵恺,辛文春,何冰纾. 外源BR处理对碱性盐胁迫下辣椒生长的影响[J]. 安徽农业科学,2020,48(14):29-31.
[25]NEWKIRK G M, WU H H, SANTANA I, et al. Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles[J]. Journal of Visualized Experiments,2018(138):58373.
[26]MARTHANDAN V, GEETHA R, KUMUTHA K, et al. Seed priming:a feasible strategy to enhance drought tolerance in crop plants[J]. International Journal of Molecular Sciences,2020,21(21):8258.
[27]王贵余. 化学药剂处理对老化辣椒种子活力的影响[J]. 中国种业,2005(8):42-43.
[28]JI X Y, TANG J L, ZHANG J P. Effects of salt stress on the morphology,growth and physiological parameters of Juglans microcarpa L. seedlings[J]. Plants,2022,11(18):2381.
[29]高俊风. 植物生物学试验指导[M]. 北京: 高等教育出版社, 2006.
[30]张露. 植物生长促进剂对玉米生长的影响及抗逆效应研究[D]. 武汉:华中农业大学,2017:3-27.
[31]NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology,1981,22(5):867-880.
[32]BASIT F, BHAT J A, ULHASSAN Z, et al. Seed priming with spermine mitigates chromium stress in rice by modifying the ion homeostasis,cellular ultrastructure and phytohormones balance[J]. Antioxidants,2022,11(9):1704.
[33]DJANAGUIRAMAN M, NAIR R, GIRALDO J P, et al. Cerium oxide nanoparticles decrease drought-induced oxidative damage in Sorghum leading to higher photosynthesis and grain yield[J]. ACS Omega,2018,3(10):14406-14416.
[34]AN J, HU P G, LI F J, et al. Emerging investigator series:molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles[J]. Environmental Science:Nano,2020,7(8):2214-2228.
[35]EL-BADRI A M A, BATOOL M, MOHAMED I A A, et al. Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.)[J]. Plant Physiology and Biochemistry,2021,166:376-392.
[36]鲁克嵩,闫磊,侯佳玉,等. 盐胁迫下外源脯氨酸对油菜Na+/K+平衡、生长及抗氧化系统的影响[J]. 华中农业大学学报,2023,42(5):141-148.
[37]谭杉杉,仇亮,段奥其,等. 次氯酸钠处理种子对芹菜幼苗可溶性糖含量及相关基因表达的影响[J]. 植物生理学报,2022,58(1):165-172.
[38]TIAN T, WANG J G, WANG H J, et al. Nitrogen application alleviates salt stress by enhancing osmotic balance,ROS scavenging,and photosynthesis of rapeseed seedlings (Brassica napus)[J]. Plant Signaling & Behavior,2022,17(1):2081419.
[39]LI J, XIE J M, YU J H, et al. Melatonin enhanced low-temperature combined with low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating root growth,antioxidant defense system,and osmotic adjustment[J]. Frontiers in Plant Science,2022,13:998293.
[40]LIU J H, LI G J, CHEN L L, et al. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio[J]. Journal of Nanobiotechnology,2021,19(1):153.
[41]ZHANG H X, ZHU W C, FENG X H, et al. Transcription factor CaSBP12 negatively regulates salt stress tolerance in pepper (Capsicum annuum L.)[J]. International Journal of Molecular Sciences,2020,21(2):444.
[42]YAO Y X, JIA L, CHENG Y, et al. Evolutionary origin of the carotenoid cleavage oxygenase family in plants and expression of pepper genes in response to abiotic stresses[J]. Frontiers in Plant Science,2022,12:792832.
[43]GAI W X, MA X, QIAO Y M, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.):CabZIP25 positively modulates the salt tolerance[J]. Frontiers in Plant Science,2020,11:139.
[44]AHMAD YASIN N, AKRAM W, KHAN W U, et al. Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L.[J]. Environmental Science and Pollution Research,2018,25(23):23236-23250.
[45]WU X X, REN Y, JIANG H L, et al. Genome-wide identification and transcriptional expression analysis of annexin genes in Capsicum annuum and characterization of CaAnn9 in salt tolerance[J]. International Journal of Molecular Sciences,2021,22(16):8667.

备注/Memo

备注/Memo:
收稿日期:2023-09-07基金项目:广东省科技厅科技计划项目(2016A020210116、2012A020602051);广东海洋大学创新强校工程科研项目(GDOU2016050256、GDOU2013050217)作者简介:秦中维(1997-),女,四川达州人,硕士研究生,研究方向为热带滨海作物逆境生理生态。(E-mail)1198674844@qq.com通讯作者:李映志,(E-mail)liyz@gdou.edu.cn
更新日期/Last Update: 2024-11-17