参考文献/References:
[1]罗锡坤,李敏,张恒栋,等. 不同类型杂交稻品种在贵州兴义的高产潜力及氮肥利用特性研究[J]. 中国稻米,2023,29(5):105-109.
[2]黄见良,李合松,李建辉,等. 不同杂交水稻吸氮特性与物质生产的关系[J]. 核农学报,1998,12(2):89-94.
[3]郭浪,肖敏,崔璨,等. 施氮量对小粒型杂交稻产量与氮素利用效率的影响[J]. 杂交水稻,2023,38(5):108-114.
[4]孔丽丽,尹彩侠,侯云鹏,等. 松嫩平原水稻高产高效氮肥运筹模式研究[J]. 植物营养与肥料学报,2023,29(8):1435-1448.
[5]张堂惠. 水稻氮素利用效率分析[J]. 南方农业,2015,9(12):63-64.
[6]张福锁,王激清,张卫峰,等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报,2008,45(5):915-924.
[7]剧成欣. 不同水稻品种对氮素响应的差异及其农艺生理性状[D]. 扬州:扬州大学,2017.
[8]PENG S, BURESH R J, HUANG J, et al. Improving nitrogen fertilization in rice by site-specific n management[J]. Agronomy for Sustainable Development,2010,30(3):649-656.
[9]李姗,黄允智,刘学英,等. 作物氮肥利用效率遗传改良研究进展[J]. 遗传,2021,43(7):629-641.
[10]JU C X, BURESH R J, WANG Z Q, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application[J]. Field Crops Research,2015,175:47-55.
[11]朱盈,徐剑,范鹏,等. 2016-2020年江苏省水稻主栽品种及其产量、品质特征研究[J]. 扬州大学学报(农业与生命科学版),2023,44(5):12-19,30.
[12]赵凌,张勇,朱镇,等. 南粳系列品种氮素利用效率初探[J]. 江苏农业学报,2022,38(5):1153-1161.
[13]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.
[14]吴昊,顾汉柱,王琛,等. 水稻根系与氮肥高效吸收利用关系研究进展[J]. 江苏农业科学,2023,51(20):9-14.
[15]ZHANG Y, IQBAL M F, WANG Y, et al. OsTBP2.1,a TATA-Binding protein,alters the ratio of OsNRT2.3b to OsNRT2.3a and improves rice grain yield[J]. International Journal of Molecular Sciences,2022,23(18):10795.
[16]徐富贤,熊洪,谢戎,等. 水稻氮素利用效率的研究进展及其动向[J]. 植物营养与肥料学报,2009,15(5):1215-1225.
[17]张蛟,陈澎军,韩继军,等. 盐逆境下施用缓释肥及其减氮处理对水稻生长、穗部性状、产量及品质的影响[J]. 江苏农业学报,2023,39(7):1483-1491.
[18]李圆圆,何平,茅桁. 稻田水肥管理研究进展及思考[J]. 排灌机械工程学报,2023,41(8):825-832.
[19]殷春渊,王书玉,刘贺梅,等. 优良食味粳稻丰产优质及氮高效协同的叶片光合生理[J]. 江苏农业科学,2023,51(17):91-97.
[20]陈苏春,胡静博,肖梦华,等. 农村生活再生水灌溉调控对稻田养分的影响[J]. 排灌机械工程学报,2022,40(4):411-418.
[21]汪帆,胡大鹏,郑玉涛,等. 减氮增钾对水稻产量品质和土壤肥力的影响[J]. 江苏农业科学,2023,51(17):86-90.
[22]ISHIKA S, MAEKAWA M, ARITE T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant and Cell Physiology,2005,46(1):79-86.
[23]程建峰,戴廷波,荆奇,等. 不同水稻基因型的根系形态生理特性与高效氮素吸收[J]. 土壤学报,2007,44(2):266-272.
[24]雷荣森. 氮肥施用量对水稻产量及氮肥利用率的影响[J]. 福建农业科技,2023,54(6):56-60.
[25]郭保卫,胡雅杰,钱海军,等. 秸秆还田下适宜施氮量提高机插稻南粳9108产量和群体质量[J]. 中国水稻科学,2015,29(5):511-518.
[26]魏海燕,王亚江,孟天瑶,等. 机插超级粳稻产量品质及氮肥利用率对氮肥的响应[J]. 应用生态学报,2014,25(2):488-496.
[27]PENG S, HUANG J, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101:9971-9975.
[28]PINGALI P L. Green revolution:impacts,limits,and the path ahead[J]. Proceedings of the National Academy of Sciences of the USA,2012,109:12302-12308.
[29]ZHAO C, LIU B, PIAO S, et al. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences of the USA,2017,114:9326-9331.
[30]凌霄霞,张作林,翟景秋,等. 气候变化对中国水稻生产的研究进展[J]. 作物学报,2019,45(3):323-334.
[31]WANG H, YANG Z Z, YU Y N, et al. Drought enhances nitrogen uptake and assimilation in maize roots[J]. Agronomy Journal,2017,109:39-46.
[32]马兆惠,李坤,程海涛,等. 表观直链淀粉和蛋白质双低型粳稻食味的关联性状分析[J]. 沈阳农业大学学报,2019,50(1):10-18.
[33]张明静,韩笑,胡雪,等. 不同种植方式下温度升高对水稻产量及同化物转运的影响[J]. 中国农业科学,2021,54(7):1537-1552.
[34]黄伦霄,吴佳宏,秦鱼河,等. 穗期高温处理赣早籼58与周南稻杂交F2∶3家系对农艺性状的影响[J]. 江苏农业科学,2023,51(5):103-109.
[35]徐鹏,贺一哲,尤翠翠,等. 高温胁迫导致水稻颖花败育的机理及其防御措施研究进展[J]. 江苏农业学报,2023,39(1):255-265.
[36]胡梅桦,王明,雷干农,等. 抽穗扬花期温度对水稻产量和稻米品质的影响[J]. 湖南农业科学,2023(5):20-23.
[37]郭军伟,吴志岐,祁国梅,等. 温度升高对水稻生长及品质的影响[J]. 农业科技与信息,2022(6):22-25.
[38]张明静,韩笑,胡雪,等. 不同种植方式下温度升高对水稻产量及同化物转运的影响[J]. 中国农业科学,2021,54(7):1537-1552.
[39]HU B, WANG W, OU S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics,2015,47(7):834-838.
[40]ZHANG J Y, LIU Y X, ZHANG N, et al. NRT1.1B is associated with root micro biotic composition and nitrogen use in field-grown rice[J]. Nature Biotechnology,2019,37:676-684.
[41]FAN X R, TANG Z, TAN Y W, et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of the USA,2016,113(26):7118-7123.
[42]LIU X Q, HUANG D M, TAO J Y, et al. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport[J]. New Phytologist,2014,204(1):74-80.
[43]GAO Z Y, WANG Y F, CHEN G, et al. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency[J]. Nature Communications,2019,10:5207.
[44]LI S, TIAN Y H, WU K, et al. Modulating plant growth metabolism coordination for sustainable agriculture[J]. Nature,2018,560(7720):595-600.
[45]LIU Y Q, WANG H R, JIANG Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature,2021,590(7847):600-605.
[46]ZHANG Y, TATEISHI-KARIMATA H, ENDOH T, et al. High-temperature adaptation of an OsNRT2.3 allele is thermoregulated by small RNAs[J]. Science Advances,2022,8(47). DOI:10.1126/sciadv.adc9785.