参考文献/References:
[1]郑涵,罗强,张益维,等. 柑橘采摘机器人目标检测算法研究进展[J]. 南方农业,2022,16(21):119-122.
[2]国家统计局. 2023中国统计年鉴[M]. 北京:中国统计出版社,2023.
[3]李会宾,史云. 果园采摘机器人研究综述[J]. 中国农业信息,2019,31(6):1-9.
[4]毛嘉威. 柑橘采摘机械臂及其控制系统设计[D]. 成都:四川农业大学,2021.
[5]XIAO Y, TIAN Z, YU J, et al. A review of object detection based on deep learning[J]. Multimedia Tools and Applications,2020,79(33/34):23729-23791.
[6]孔翰博,王克强,蔡肯,等. 基于机器视觉的采摘机器人目标识别定位研究应用进展[J]. 电子技术与软件工程,2022(10):160-165.
[7]TIAN Y, YANG G, WANG Z, et al. Instance segmentation of apple flowers using the improved Mask R-CNN model[J]. Biosystems Engineering,2020,193:264-278.
[8]宋怀波,尚钰莹,何东健. 果实目标深度学习识别技术研究进展[J]. 农业机械学报,2023,54(1):1-19.
[9]KURTULMUS F, LEE W S, VARDAR. A green citrus detection using ‘eigenfruit’, color and circular Gabor texture features under natural outdoor conditions[J]. Computers and Electronics in Agriculture,2011,78(2):140-149.
[10]LU J, SANG N. Detecting citrus fruits and occlusion recovery under natural illumination conditions[J]. Computers and Electronics in Agriculture,2015,110:121-130.
[11]邹继欣,崔天时,邢伟. 基于DSP的柑橘果实自动识别系统[J]. 农机化研究,2015,37(2):166-170.
[12]邹伟. 基于机器视觉技术的柑橘果实成熟度分选研究[J]. 农业与技术,2023,43(17):41-44.
[13]张珺. 基于机器学习的智能农机采摘控制实验与仿真[J]. 集成电路应用,2023,40(6):70-72.
[14]方东玉. 基于SVM的柑橘品质检测技术[D]. 长沙:中南林业科技大学,2016.
[15]李华. 基于机器视觉的柑橘外观品质鉴定技术研究[D]. 郑州:河南农业大学,2024.
[16]LIN G, TANG Y, ZOU X, et al. In-field citrus detection and localisation based on RGB-D image analysis[J]. Biosystems Engineering,2019,186:34-44.
[17]申飘. 基于图像处理与机器学习的柑橘表面缺陷检测研究[D]. 长沙:中南林业科技大学,2023.
[18]CAI C, ZHOU G, LU C. Citrus surface defect identification based on PCS-2D-Otsu and CGWO-DT-SVM[J]. Multimedia Tools and Applications,2023,83(15):43649-43672.
[19]BEHERA S K, ANITHA K, AMAT R, et al. ResNet101-SVM:hybrid convolutional neural network for citrus fruits classification[J]. Journal of Intelligent & Fuzzy Systems,2024,46(3):7035-7045.
[20]BERTHELOT D, CARLINI N, GOODFELLOW I, et al. Mixmatch:a holistic approach to semi-supervised learning[C/OL]//WALLACH H, LAROCHELLE H, BAYGELZIMER A, et al. Advances in neural information processing systems32(NeurIPS 2019). San Diego,USA:NeurIPS Foundation,2019. https://arxiv.org/pdf/1905.02249v2.
[21]吕佳,李帅军,曾梦瑶,等. 基于半监督SPM-YOLO V5的套袋柑橘检测算法[J]. 农业工程学报,2022,38(18):204-211.
[22]ROY P, KISLAY A, PLONSKI P A, et al. Vision-based preharvest yield mapping for apple orchards[J]. Computers and Electronics in Agriculture,2019,164:104897.
[23]CIARFUGLIA T A, MOTOI I M, SARACENI L, et al. Weakly and semi-supervised detection, segmentation and tracking of table grapes with limited and noisy data[J]. Computers and Electronics in Agriculture,2023,205:107624.
[24]ALBELWI S. Survey on self-supervised learning:auxiliary pretext tasks and contrastive learning methods in imaging[J]. Entropy,2022,24(4):551.
[25]姜欣悦. 基于图像识别的单株成熟柑橘树产量预估研究[J]. 南方农机,2022,53(23):66-68.
[26]SUN B, LIU K, FENG L, et al. The surface defects detection of citrus on trees based on a support vector machine[J]. Agronomy,2022,13(1):43.
[27]赵永强,饶元,董世鹏,等. 深度学习目标检测方法综述[J]. 中国图像图形学报,2020,25(4):629-654.
[28]董戈. 基于深度学习和图像处理的水果收获机器人抓取系统[J]. 农机化研究,2021,43(3):260-264.
[29]WANG Z, UNDERWOOD J, WALSH K B. Machine vision assessment of mango orchard flowering[J]. Computers and Electronics in Agriculture,2018,151:501-511.
[30]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. New Jersey:IEEE Computer Society,2014:580-587.
[31]GIRSHICK R. Fast R-cnn[C]// IEEE. Proceedings of the IEEE international conference on computer vision. New Jersey:IEEE Computer Society,2015:1440-1448.
[32]CAI Z, VASCONCELOS N. Cascade R-cnn:delving into high quality object detection[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. New Jersey:IEEE Computer Society,2018:6154-6162.
[33]杨国. 基于深度学习的自然环境下柑橘检测研究[D]. 长沙:中南林业科技大学,2023.
[34]任会,朱洪前. 基于深度学习的目标橘子识别方法研究[J]. 计算机时代,2021(1):57-60,64.
[35]YANG C H, XIONG L Y, WANG Z, et al. Integrated detection of citrus fruits and branches using a convolutional neural network[J]. Computers and Electronics in Agriculture,2020,174:105469.
[36]黄磊磊,苗玉彬. 基于深度学习的重叠柑橘分割与形态复原[J]. 农机化研究,2023,45(10):70-75.
[37]BEHERA S K, RATH A K, SETHY P K. Fruits yield estimation using Faster R-CNN with MIoU[J]. Multimedia Tools and Applications,2021,80(12):19043-19056.
[38]LU J, YANG R, YU C, et al. Citrus green fruit detection via improved feature network extraction[J]. Frontiers in Plant Science,2022,13:946154.
[39]MIN W, WANG Z, YANG J, et al. Vision-based fruit recognition via multi-scale attention CNN[J]. Computers and Electronics in Agriculture,2023,210:107911.
[40]孙国奇. 基于深度学习的果园环境下柑橘果实与枝干分割定位方法研究[D]. 桂林:广西师范大学,2023.
[41]贾艳平,桑妍丽,李月茹. 基于改进Faster R-CNN模型的水果分类识别[J]. 食品与机械,2023,39(8):129-135.
[42]LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//ECCV. European conference on computer vision 2016(Part I). Amsterdam:Springer International Publishing,2016:21-37.
[43]HOWARD A G, ZHU M, CHEN B, et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[Z/OL]. (2017-04-17). http://arxiv.org/abs/1704.04861.
[44]ZHANG X, ZHOU X, LIN M, et al. Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//IEEE:Proceedings of the IEEE conference on computer vision and pattern recognition. New Jersey:IEEE Computer Society,2018:6848-6856.
[45]LIU Z, LIN Y, CAO Y, et al. Swin transformer:hierarchical vision transformer using shifted windows[C]//IEEE. Proceedings of the IEEE/CVF international conference on computer vision. New Jersey:IEEE Computer Society,2021:10012-10022.
[46]宋中山,刘越,郑禄,等. 基于改进YOLO V3的自然环境下绿色柑橘的识别算法[J]. 中国农机化学报,2021,42(11):159-165.
[47]陈文康,陆声链,刘冰浩,等. 基于改进YOLO V4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版),2021,39(5):134-146.
[48]刘芳. 基于YOLO V5的柑橘果实目标检测研究[J]. 信息与电脑(理论版),2022,34(2):152-154.
[49]CHEN W, LU S, LIU B, et al. Citrus YOLO:a algorithm for citrus detection under orchard environment based on YOLO V4[J]. Multimedia Tools and Applications,2022,81(22):31363-31389.
[50]庄昊龙,周嘉灏,林毓翰,等. 基于改进YOLO V5+DeepSort的柑橘果实识别与计数研究[J]. 南方农机,2023,54(15):9-13.
[51]JING J, ZHAI M, DOU S, et al. Optimizing the YOLO V7-Tiny model with multiple strategies for citrus fruit yield estimation in complex scenarios[J]. Agriculture,2024,14(2):303.
[52]易诗,李俊杰,张鹏,等. 基于特征递归融合YOLO V4网络模型的春见柑橘检测与计数[J]. 农业工程学报,2021,37(18):161-169.
[53]黄彤镔,黄河清,李震,等. 基于YOLO V5改进模型的柑橘果实识别方法[J]. 华中农业大学学报,2022,41(4):170-177.
[54]LIU X, LI G, CHEN W, et al. Detection of dense citrus fruits by combining coordinated attention and cross-scale connection with weighted feature fusion[J]. Applied Sciences,2022,12(13):6600.
[55]李子茂,李嘉晖,尹帆,等. 基于可形变卷积与SimAM注意力的密集柑橘检测算法[J]. 中国农机化学报,2023,44(2):156-162.
[56]周剑,徐中贵,谢知音. 基于空间金字塔池化的YOLOv3的柑橘多分级研究[J]. 现代农业装备,2023,44(2):35-43,97.
[57]LI C, MA W, LIU F, et al. Recognition of citrus fruit and planning the robotic picking sequence in orchards[J]. Signal, Image and Video Processing,2023,17(8):4425-4434.
[58]蹇川,郑永强,刘艳梅,等. 目标检测算法YOLO V5s用于柑桔成熟果实检测的改进[J]. 中国南方果树,2024,53(1):224-231.
[59]汤旸,杨光友,王焱清. 面向采摘机器人的改进YOLO V3-tiny轻量化柑橘识别方法[J]. 科学技术与工程,2022,22(31):13824-13832.
[60]杨国,黄文静,朱洪前,等. 自然环境下黄绿柑橘检测通用模型的构建[J]. 林业工程学报,2022,7(5):134-141.
[61]YANG R, HU Y, YAO Y, et al. Fruit target detection based on BCo-YOLO V5 model[J]. Mobile Information Systems,2022,2022:8457173.
[62]殷献博,邓小玲,兰玉彬,等. 基于改进YOLO X-Nano算法的柑橘梢期长势智能识别[J]. 华南农业大学学报,2023,44(1):142-150.
[63]黄辉,苏成悦,王银海. 基于改进YOLO V5的柑橘目标识别研究[J]. 电脑与信息技术,2024,32(2):27-29.
[64]帖军,赵捷,郑禄,等. 改进YOLO V5模型在自然环境下柑橘识别的应用[J]. 中国农业科技导报,2024,26(7):1-10.
[65]刘洁,李燕,肖黎明,等. 基于改进YOLO V4模型的橙果识别与定位方法[J]. 农业工程学报,2022,38(12):173-182.
[66]姜锟. 柑橘采摘机器人目标识别、定位与采摘研究[D]. 镇江:江苏大学,2023.
[67]王乙涵. 基于改进YOLO V7的自然环境下柑橘果实识别与定位方法研究[D]. 成都:四川农业大学,2023
[68]KONG D, WANG J, ZHANG Q, et al. Research on fruit spatial coordinate positioning by combining improved yolov8s and adaptive multi-resolution model[J]. Agronomy,2023,13(8):2122.
[69]熊俊涛,霍钊威,黄启寅,等. 结合主动光源和改进YOLO V5s模型的夜间柑橘检测方法[J]. 华南农业大学学报,2024,45(1):97-107.
[70]孙宝霞,梁翠晓,刘凯,等. 夜间环境下树上柑橘表征缺陷深度学习检测方法[J]. 林业工程学报,2021,6(6):148-155.
[71]FENG J, WANG Z, WANG S, et al. MSDD-YOLOX:An enhanced YOLO X for real-time surface defect detection of oranges by type[J]. European Journal of Agronomy,2023,149:126918.
[72]贾雪莹,赵春江,周娟,等. 基于改进YOLO V7模型的柑橘表面缺陷在线检测[J]. 农业工程学报,2023,39(23):142-151.