参考文献/References:
[1]谢雨茜, 李路, 朱明,等. 基于EMD与K-means的ILSTM模型在池塘溶解氧预测中的应用[J]. 华中农业大学学报(自然科学版),2022,41(3):200-210.
[2]PARK K D, KANG D H, SO Y, et al. Water quality prediction using the ARIMA time series analysis model in the Nakdong River estuary[C]. San Francisco: AGU Fall Meeting Abstracts,2019.
[3]张梦迪,徐庆,刘振鸿,等. 基于动态滑动窗口BP神经网络的水质时间序列预测[J]. 环境工程技术学报,2022,12(3):809-815.
[4]龚怀瑾,毛力,杨弘. 基于变尺度混沌QPSO-LSSVM的水质溶氧预测建模[J]. 计算机与应用化学, 2013,30(3):315-318.
[5]刘晨,李莎,丛孙丽,等. 基于EEMD和萤火虫算法优化SVM的溶解氧预测[J]. 计算机仿真, 2021,38(1):359-365.
[6]白雯睿,杨毅强,郭辉,等. 基于VMD-CNN-LSTM的珠江流域水质多步预测模型研究[J]. 四川轻化工大学学报(自然科学版),2022,35(4):66-74.
[7]DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3):531-544.
[8]LUO H, PAAL S G. Metaheuristic least squares support vector machine-based lateral strength modelling of reinforced concrete columns subjected to earthquake loads[J]. Structures,2021,33:748-758.
[9]MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software,2014,69(3):46-61.
[10]高兵,郑雅,秦静, 等. 基于麻雀搜索算法和改进粒子群优化算法的网络入侵检测算法[J]. 计算机应用,2022,42(4):1201-1206.
[11]胡衍坤,王宁,刘枢,等. 时间序列模型和LSTM模型在水质预测中的应用研究[J]. 小型微型计算机系统,2021,42(8):1589-1573.
[12]LIU J T, YU C, HU Z H, et al. Accurate prediction scheme of water quality in smart mariculture with deep Bi-S-SRU learning network[J]. Ieee Access,2020,8(99):24784-24798.
[13]郑圆,胡建中,贾民平,等. 一种基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击,2020,39(21):195-202.
[14]崔东文,袁树堂. 基于WPD-AHA-ELM模型的水质时间序列多步预测[J]. 三峡大学学报(自然科学版),2023,45(1):6-13.
相似文献/References:
[1]刘国锋,徐跑,吴霆,等.中国水产养殖环境氮磷污染现状及未来发展思路[J].江苏农业学报,2018,(01):225.[doi:doi:10.3969/j.issn.1000-4440.2018.01.033]
LIU Guo-feng,XU Pao,WU Ting,et al.Present condition of aquaculture nitrogen and phosphorus environmental pollution and future development strategy[J].,2018,(08):225.[doi:doi:10.3969/j.issn.1000-4440.2018.01.033]
[2]冯国富,卢胜涛,陈明,等.基于自注意力机制和改进的K-BiLSTM的水产养殖水体溶解氧含量预测模型[J].江苏农业学报,2024,(03):490.[doi:doi:10.3969/j.issn.1000-4440.2024.03.011]
FENG Guo-fu,LU Sheng-tao,CHEN Ming,et al.Prediction model of dissolved oxygen content in aquaculture water based on self-attention mechanism and improved K-BiLSTM[J].,2024,(08):490.[doi:doi:10.3969/j.issn.1000-4440.2024.03.011]