参考文献/References:
[1]谢丽美,晏慧君,唐开学,等. 云南4个主栽食用玫瑰品种产量评价及营养成分分析[J]. 西南农业学报,2022,35(11):2627-2632.
[2]董万鹏,吴楠,吴洪娥,等. 不同食用玫瑰生长特性、花品质及生理变化特征[J]. 热带农业科学,2020,40(8):6-11.
[3]陈礼鹏. 基于机器视觉的簇生猕猴桃果实多目标识别方法研究[D]. 杨凌:西北农林科技大学,2018.
[4]吴超. 基于计算机视觉的玫瑰鲜切花质量分级评价[D]. 昆明:昆明理工大学,2020.
[5]SHAO Y, WANG Y, XUAN G, et al. Assessment of strawberry ripeness using hyperspectral imaging[J]. Analytical Letters,2020,54(10):1547-1560.
[6]CHAO Q, NYALALA I, CHEN K J. Detecting the early flowering stage of tea chrysanthemum using the F-YOLO model[J]. Agronomy,2021,11(5):834.
[7]王小荣,许燕,周建平,等. 基于改进YOLOv7的复杂环境下红花采摘识别[J]. 农业工程学报,2023,39(6):169-176.
[8]王彦钧. 食用玫瑰花采摘机器人研究[D]. 昆明:昆明理工大学,2015.
[9]张振国,邢振宇,赵敏义,等. 改进YOLOv3的复杂环境下红花丝检测方法[J]. 农业工程学报,2023,39(3):162-170.
[10]龚惟新,杨珍,李凯,等. 基于改进YOLOv5s的自然环境下猕猴桃花朵检测方法[J]. 农业工程学报,2023,39(6):177-185.
[11]顾满局. 基于机器视觉的玫瑰鲜切花花形分类研究[D]. 昆明:昆明理工大学,2023.
[12]REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. Advances in Neural Information Processing Systems,2015,28:91-99.
[13]LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//EUROPEAN CONFERENCE ON COMPUTER VISION. Computer vision-ECCV 2016:14th european conference. Amsterdam,Netherlands:Springer International Publishing,2016.
[14]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// IEEE. 2017 IEEE international conference on computer vision. Venice,Italy:IEEE,2017.
[15]魏天宇,柳天虹,张善文,等. 基于改进YOLOv5s的辣椒采摘机器人识别定位方法[J]. 扬州大学学报(自然科学版),2023,26(1):61-69.
[16]邢洁洁,谢定进,杨然兵,等. 基于YOLOv5s的农田垃圾轻量化检测方法[J]. 农业工程学报,2022,38(19):153-161.
[17]王金鹏,周佳良,张跃跃,等. 基于优选 YOLOv7模型的采摘机器人多姿态火龙果检测系统[J]. 农业工程学报,2023,39(8):276-283.
[18]JIANG T, CHEN S. A lightweight forest pest image recognition model based on improved YOLOv8[J]. Applied Sciences,2024,14(5):1941.
[19]LIN T, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE conference on computer vision and pattern recognition. Honolulu,HI,USA:IEEE,2017.
[20]LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//IEEE/CVF. 2018 IEEE/CVF conference on computer vision and pattern recognition. Salt Lake City,UT,USA:IEEE,2018.
[21]杨其晟,李文宽,杨晓峰,等. 改进YOLOv5的苹果花生长状态检测方法[J]. 计算机工程与应用,2022,58(4):237-246.
[22]JIANG Y Q, TAN Z Y, WANG J Y, et al. A heavy-neck paradigm for object detection[C]//INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS. The tenth international conference on learning representations. Vienna,Austria:ICLR,2021.
[23]陈范凯,李士心. 改进Yolov5的无人机目标检测算法[J]. 计算机工程与应用,2023,59(18):218-225.
[24]DING X, ZHANG X, MA N, et al. RepVGG:making vgg-style convnets great again[C]//IEEE/CVF. 2021 IEEE/CVF conference on computer vision and pattern recognition. Nashville,TN,USA:IEEE,2021.
[25]WANG Q, WU B, ZHU P, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF. 2020 IEEE/CVF conference on computer vision and pattern recognition. Seattle,WA,USA:IEEE,2020.
[26]肖粲俊,潘睿志,李超,等. 基于改进YOLOv5s绝缘子缺陷检测技术研究[J]. 电子测量技术,2022,45(24):137-144.
[27]陈超,齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学,2019,46(3):63-73.
[28]LU S, CHEN W, ZHANG X, et al. Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation[J]. Computers and Electronics in Agriculture,2022,193:106696.
[29]HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// IEEE/CVF. 2021 IEEE/CVF conference on computer vision and pattern recognition. Nashville,TN,USA:IEEE,2020.
相似文献/References:
[1]李恒,南新元,高丙朋,等.一种基于GhostNet的绿色类圆果实识别方法[J].江苏农业学报,2023,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
LI Heng,NAN Xin-yuan,GAO Bing-peng,et al.A green round-like fruits identification method based on GhostNet[J].,2023,(08):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
[2]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(08):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
[3]施杰,林双双,张威,等.基于轻量化改进型YOLOv5s的玉米病虫害检测方法[J].江苏农业学报,2024,(03):427.[doi:doi:10.3969/j.issn.1000-4440.2024.03.005]
SHI Jie,LIN Shuang-shuang,ZHANG Wei,et al.A corn disease and pest detection method based on lightweight improved YOLOv5s[J].,2024,(08):427.[doi:doi:10.3969/j.issn.1000-4440.2024.03.005]