参考文献/References:
[1]TIAN H K, WANG T H, LIU Y D, et al. Computer vision technology in agricultural automation —a review[J]. Information Processing in Agriculture,2020,7(1):1-19.
[2]刘拥民,刘翰林,石婷婷,等. 一种优化的Swin Transformer番茄叶片病害识别方法[J]. 中国农业大学学报,2023,28(4):80-90.
[3]马丽,周巧黎,赵丽亚,等. 基于深度学习的番茄叶片病害分类识别研究[J]. 中国农机化学报,2023,44(7):187-193.
[4]牛学德,高丙朋,南新元,等. 基于改进DenseNet卷积神经网络的番茄叶片病害检测[J]. 江苏农业学报,2022,38(1):129-134.
[5]YAZDIAN H, SALMANI-DEHAGHI N, ALIJANIAN M. A spatially promoted SVM model for GRACE downscaling: using ground and satellite-based datasets[J]. Journal of Hydrology,2023,626:130214.
[6]KHALIFA F, ABDELKADER H, ELSAID A. An analysis of ensemble pruning methods under the explanation of Random Forest[J]. Information Systems,2024,120:102310.
[7]GUAN X, TERADA Y. Sparse kernel K-means for high-dimensional data[J]. Pattern Recognition,2023,144:109873.
[8]崔兆亿,耿秀丽. 基于随机森林和量子粒子群优化的SVM算法[J]. 计算机集成制造系统,2023,29(9):2929-2936.
[9]汤文亮,黄梓锋. 基于知识蒸馏的轻量级番茄叶部病害识别模型[J]. 江苏农业学报,2021,37(3):570-578.
[10]ABADE A, FERREIRA P, DE BARROS VIDAL F. Plant diseases recognition on images using convolutional neural networks: a systematic review[J]. Computers and Electronics in Agriculture,2021,185:106125.
[11]SMIRNOV E, TIMOSHENKO D, ANDRIANOV S. Comparison of regularization methods for imageNet classification with deep convolutional neural networks[J]. AASRI Procedia,2014,6:89-94.
[12]JIA S J, JIA P Y, HU S P, et al. Automatic detection of tomato diseases and pests based on leaf images:2017 Chinese automation congress (CAC)[C]. Jinan:IEEE, 2017.
[13]YADAV D, JALAL A, GARLAPATI D, et al. Deep learning-based ResNeXt model in phycological studies for future[J]. Algal Research,2020,50:102018.
[14]KHAN M, UDDIN M, PARVEZ M, et al. A squeeze and excitation ResNeXt-based deep learning model for Bangla handwritten compound character recognition[J]. Journal of King Saud University-Computer and Information Sciences,2022,34(6):3356-3364.
[15]YANG L, YU X Y, ZHANG S P, et al. GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases[J]. Computers and Electronics in Agriculture,2023,204:107543.
[16]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston,MA,USA,2015:1-9.
[17]RAZA M, NOSHEEN A, YASMIN H, et al. Application of aquatic plants alone as well as in combination for phytoremediation of household and industrial wastewater[J]. Journal of King Saud University-Science,2023,35(7):102805.
[18]LU Q, YE W X, YIN L F. ResDenIncepNet-CBAM with principal component analysis for wind turbine blade cracking fault prediction with only short time scale SCADA data[J]. Measurement,2023,212:112696.
[19]CHEN L J, YAO H D, FU J Y, et al. The classification and localization of crack using lightweight convolutional neural network with CBAM[J]. Engineering Structures,2023,275:115291.
[20]LAU K, PO L, REHMAN Y. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications,2023,236:121352.
[21]杨佳昊,左昊轩,黄祺成,等. 基于YOLO v5s的作物叶片病害检测模型轻量化方法[J]. 农业机械学报,2023,54(增刊1):222-229.
[22]陈智超,汪国强,李飞,等. 基于Bi-LSTM与多尺度神经网络模型的番茄病害识别[J]. 江苏农业科学,2023,51(15):194-203.
[23]曹林,周凯,申鑫,等. 智慧林业发展现状与展望[J]. 南京林业大学学报(自然科学版),2022,46(6):83-95.
[24]张会敏,谢泽奇. 基于知识图谱与深度学习的黄瓜叶部病害识别方法[J]. 江苏农业科学, 2023,51(15):173-178.
[25]鲍彤,罗瑞,郭婷,等. 基于BERT字向量和TextCNN的农业问句分类模型分析[J]. 南方农业学报,2022,53(7):2068-2076.
[26]刘媛媛,王定坤,邬雷,等. 基于知识蒸馏和模型剪枝的轻量化模型植物病害识别[J]. 浙江农业学报,2023,35(9):2250-2264.
[27]邵仁荣,刘宇昂,张伟,等. 深度学习中知识蒸馏研究综述[J]. 计算机学报,2022,45(8):1638-1673.