[1]邹宜芯,李慧,任玉欣,等.硫代葡萄糖苷浸种对青花菜种子萌发及生理特性的影响[J].江苏农业学报,2024,(08):1379-1388.[doi:doi:10.3969/j.issn.1000-4440.2024.08.003]
 ZOU Yixin,LI Hui,REN Yuxin,et al.Effects of soaking seeds with glucosinolates on seed germination and physiological characteristics of broccoli[J].,2024,(08):1379-1388.[doi:doi:10.3969/j.issn.1000-4440.2024.08.003]
点击复制

硫代葡萄糖苷浸种对青花菜种子萌发及生理特性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年08期
页码:
1379-1388
栏目:
遗传育种·生理生化
出版日期:
2024-08-30

文章信息/Info

Title:
Effects of soaking seeds with glucosinolates on seed germination and physiological characteristics of broccoli
作者:
邹宜芯李慧任玉欣赵凯文
(天津农学院园艺园林学院,天津300392)
Author(s):
ZOU YixinLI HuiREN YuxinZHAO Kaiwen
(College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, China)
关键词:
青花菜硫代葡萄糖苷种子萌发生理特性抗逆性
Keywords:
broccoliglucosinolatesseed germinationphysiological characteristicsstress resistance
分类号:
S635.3
DOI:
doi:10.3969/j.issn.1000-4440.2024.08.003
文献标志码:
A
摘要:
以青花菜种子为试验材料,采用培养皿进行发芽试验,设置蒸馏水、200 mmol/L NaCl和15% PEG-6000 3种培养条件,研究不同质量浓度[0 μg/mL(CK)、0.94 μg/mL、1.88 μg/mL、3.75 μg/mL、7.50 μg/mL、15.00 μg/mL]硫代葡萄糖苷浸种对青花菜种子萌发指标、幼苗形态指标及生理指标的影响。研究结果表明,与CK相比,蒸馏水培养下,硫代葡萄糖苷浸种对青花菜种子的发芽率和发芽势没有显著影响,7.50 μg/mL硫代葡萄糖苷浸种的青花菜根冠比显著提高;1.88~7.50 μg/mL硫代葡萄糖苷浸种的青花菜POD活性显著高于对照,其中3.75 μg/mL硫代葡萄糖苷浸种能显著提高青花菜的SOD和CAT活性,且MDA含量显著低于对照。盐胁迫下,7.50 μg/mL硫代葡萄糖苷浸种能显著提高青花菜的SOD、POD活性,显著降低MDA含量。干旱胁迫下,硫代葡萄糖苷浸种均能显著提高青花菜种子萌发指标,显著降低青花菜MDA含量;0.94 μg/mL硫代葡萄糖苷浸种能显著增加青花菜的主根长,1.88 μg/mL和3.75 μg/mL硫代葡萄糖苷浸种能显著提高青花菜的根冠比;15.00 μg/mL硫代葡萄糖苷浸种能显著增加青花菜的POD活性。隶属函数分析结果表明,蒸馏水培养和干旱胁迫下3.75 μg/mL硫代葡萄糖苷浸种及盐胁迫下7.50 μg/mL硫代葡萄糖苷浸种的隶属函数值最高。综上所述,硫代葡萄糖苷浸种能有效缓解青花菜种子萌发期和幼苗期旱害和盐害,干旱胁迫下浸种最适质量浓度为3.75 μg/mL,盐胁迫下浸种最适质量浓度为7.50 μg/mL。
Abstract:
In this study, broccoli seeds were used as experimental materials, and germination experiments were carried out using culture dishes. Three culture conditions of distilled water, 200 mmol/L NaCl and 15% PEG-6000 were set up. Six different concentrations of glucosinolates were set as 0 μg/mL (CK), 0.94 μg/mL, 1.88 μg/mL, 3.75 μg/mL, 7.50 μg/mL and 15.00 μg/mL. The effects of different mass concentrations of glucosinolates on seed germination indices, seedling morphological indices and physiological indices of broccoli were studied. The results showed that compared with CK, soaking seeds with glucosinolates had no significant effect on the germination rate and germination potential of broccoli under distilled water culture, but the root-shoot ratio of broccoli in the treatment of soaking seeds with 7.50 μg/mL glucosinolates was significantly increased. The POD activity of broccoli in the treatment of soaking seeds with 1.88-7.50 μg/mL glucosinolates was significantly higher than that in the control, and the SOD and CAT activities of broccoli in the treatment of soaking seeds with 3.75 μg/mL glucosinolates were significantly increased, and the MDA content was significantly lower than that in the control. Under salt stress, soaking seeds with 7.50 μg/mL glucosinolates could significantly increase the activities of SOD and POD, and significantly reduce the content of MDA in broccoli. Under drought stress, soaking seeds with glucosinolates could significantly improve the germination indices of broccoli seeds and significantly reduce the MDA content of broccoli. Soaking seeds with 0.94 μg/mL glucosinolates could significantly increase the main root length of broccoli, and soaking seeds with 1.88 μg/mL and 3.75 μg/mL glucosinolates could significantly increase the root-shoot ratio of broccoli. Soaking seeds with 15.00 μg/mL glucosinolates could significantly increase the POD activity of broccoli. The results of membership function analysis showed that the membership function values of 3.75 μg/mL glucosinolate soaking treatment under distilled water culture and drought stress and 7.50 μg/mL glucosinolate soaking treatment under salt stress were the highest. In summary, soaking seeds with glucosinolates can effectively alleviate the drought and salt damage of broccoli during seed germination and seedling stage, the optimum concentration of glucosinolates for soaking seeds under drought stress is 3.75 μg/mL, and the optimum concentration of glucosinolates for soaking seeds under salt stress is 7.50 μg/mL.

参考文献/References:

[1]刘炳仁. 特种蔬菜高产栽培新技术[M]. 天津:天津科学技术出版社,2006:93-94.
[2]张振超,潘永飞,戴忠良,等. 青花菜越冬设施高产栽培技术[J]. 长江蔬菜,2021(11):24-26.
[3]杨佳航. 西兰花中萝卜硫苷的提取和纯化研究[D]. 杭州:浙江工商大学,2018.

[4]江敏. 萝卜硫苷的分离纯化工艺研究[D]. 合肥:合肥工业大学,2012.
[5]梁志乐,汪宽鸿,杨静,等. 硫代葡萄糖苷在十字花科植物应对非生物胁迫中的作用[J]. 园艺学报,2022,49(1):200-220.
[6]SALEHIN M, LI B, TANG M, et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels[J]. Nature Communications,2019,10(1):4021.
[7]MARTNEZ-BALLESTA M, MORENO-FERNNDEZ D A, CASTEJN D, et al. The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana[J]. Frontiers in Plant Science,2015,6:524.
[8]GUO R, WANG X, HAN X, et al. Comparative transcriptome analyses revealed different heat stress responses in high- and low-GS Brassica alboglabra sprouts[J]. BMC Genomics,2019,20(1):269.
[9]李向果,汝应俊,年芳,等. 西兰花叶中硫代葡萄糖苷酸水解产物的体外和体内抗菌试验[J]. 甘肃农业大学学报,2014,49(2):55-60.
[10]张睿,于建丽,宋璇,等. 西兰花萝卜硫苷提取物的抑菌及体外免疫活性探究[J]. 食品研究与开发,2021,42(4):1-7.
[11]GAN R Y, LUI W Y, WU K, et al. Bioactive compounds and bioactivities of germinated edible seeds and sprouts:an updated review[J]. Trends in Food Science & Technology,2017,59:1-14.
[12]LINIC I, AMEC D, GRZ J, et al. Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among brassicaceae[J]. Plants,2019,8(6):155.
[13]张毅,韩玉娥,张银乐,等. PEG-6000模拟干旱胁迫下3个青稞品种的萌发特性及抗旱性评价[J]. 江苏农业科学,2019,47(15):139-142.
[14]聂萌恩,宁娜,张一中,等. 褪黑素对盐胁迫下高粱种子萌发的缓解效应及生理机制[J]. 种子,2023,42(4):31-40,63.
[15]支巨振,毕辛华,杜克敏,等. 农作物种子检验规程GB/T 3543.1-3543.7-1995[M]. 北京:中国标准出版社,1995.
[16]李子芳,吴锡冬. 植物丙二醛含量测定试验设计方案[J]. 天津农业科学,2016,22(9):49-51.
[17]GIANNOPOLITIS C N, RIES S K. Superoxide Dismutases[J]. Plant Physiology,1977,59(2):309-314.
[18]KOCHBA J, LAVEE S, SPIEGEL-ROY P. Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic ‘Shamouti’ orange ovular callus lines1[J]. Plant and Cell Physiology,1977,18(2):463-467.
[19]YANG Y, LIU Q, WANG G X, et al. Germination, osmotic adjustment, and antioxidant enzyme activities of gibberellin-pretreated Picea asperata seeds under water stress[J]. New Forests,2009,39(2):231-243.
[20]ENDARA M J, COLEY P D. The resource availability hypothesis revisited: a meta-analysis[J]. Functional Ecology,2011,25(2):389-398.
[21]SNCHEZ-PUJANTE P J, BORJA-MARTNEZ M, PEDREO M , et al. Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures[J]. Planta,2017,246(1):19-32.
[22]舒思晨. 外源MeJA和BR对番茄种子萌发的作用及其干旱胁迫下对幼苗生长的影响[D]. 乌鲁木齐:新疆农业大学,2023.
[23]SANJAYA G, ISOBEL A P, STEPPUHN H, et al. Seedling, early vegetative, and adult plant growth of oilseed rapes (Brassica napus L.) under saline stress[J]. Canadian Journal of Plant Science,2019,99(6):927-941.
[24]魏茜雅,林欣琪,梁腊梅,等. 褪黑素引发处理提高朝天椒种子萌发及幼苗耐盐性的生理机制[J]. 江苏农业学报,2022,38(6):1637-1647.
[25]MOHAMED Z, KADDA H, INES T, et al. Effect of salinity and drought on the germination of Lygeum spartum L. in the region of saida (western algerian steppe)[J]. Ekológia(Bratislava),2023,42(2):159-164.
[26]龙卫华,浦惠明,张洁夫,等. 甘蓝型油菜发芽期的耐盐性筛选 [J]. 中国油料作物学报,2013,35(3):271-275.
[27]胡竞渝,冯国军,刘大军,等. 外源腐胺对盐胁迫下菜豆种子萌发及抗性的影响[J]. 中国农学通报,2023,39(15):52-58.
[28]苏金强,谢晓清,林秋金,等. 外源赤霉素对盐胁迫下百香果种子萌发及幼苗生长的影响[J]. 广东农业科学,2023,50(10):66-74.
[29]蔚胜利,王秋雁,张群珧,等. 5-ALA浸种对干旱胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草学,2022(6):22-31.
[30]范小玉,陈雷,刘卫星,等. 氯化钙浸种对干旱胁迫下花生种子萌发及幼苗生理特性的影响[J]. 江苏农业科学,2022,50(8):101-105.
[31]邬燕. 模拟干旱胁迫下葡萄的抗旱生理生化机理研究[D]. 呼和浩特:内蒙古农业大学,2023.
[32]孙三杰,李建明,姚勇哲,等. 亚低温与干旱胁迫对番茄幼苗渗透调节物质与抗氧化酶活性的影响[J]. 干旱地区农业研究,2012,30(3):154-158,164.
[33]MENG X, CAI J, DENG L, et al. SlSTE1 promotes abscisic acid-dependent salt stress-responsive pathways via improving ion homeostasis and reactive oxygen species scavenging in tomato[J]. Journal of Integrative Plant Biology,2020,62(12):1942-1966.
[34]李新蕾,李叶芳,李凤荣,等. 干旱胁迫对扁核木种子萌发及幼苗生理特性的影响[J]. 云南农业大学学报(自然科学),2020,35(4):682-687.
[35]刘建新,王金成,王瑞娟,等. 外源过氧化氢提高燕麦耐盐性的生理机制[J]. 草业学报,2016,25(2):216-222.
[36]赵野,刘威,王贺,等. 外源CaCl2对盐胁迫下西伯利亚白刺活性氧代谢的影响[J]. 植物生理学报,2021,57(5):1105-1112.
[37]卢环,王成,曾玲玲,等. 不同浓度烯效唑浸种对绿豆生理及生长的影响[J]. 黑龙江农业科学,2023(8):50-57.
[38]张成冉,徐广海,宋朝玉,等. 糖浸种对盐胁迫玉米种子萌发和幼苗生长的影响[J]. 种子,2021,40(8):51-56.
[39]张亮,李玉婷,夏文静,等. 盐胁迫下异甜菊醇浸种对油菜种子萌发和幼苗生长的影响[J]. 福建农业学报,2020,35(8):883-890.

[40]范小玉,陈雷,刘卫星,等. 氯化钙浸种对干旱胁迫下花生种子萌发及幼苗生理特性的影响[J]. 江苏农业科学,2022,50(8):101-105.

相似文献/References:

[1]朱长志,张志仙,檀国印,等.青花菜主要农艺性状配合力遗传分析[J].江苏农业学报,2016,(02):430.[doi:10.3969/j.issn.1000-4440.2016.02.029]
 ZHU Chang-zhi,ZHANG Zhi-xian,TAN Guo-yin,et al.Genetic analysis of combining ability of major agronomic traits in Brassica oleracea L. var. italica[J].,2016,(08):430.[doi:10.3969/j.issn.1000-4440.2016.02.029]
[2]裴徐梨,荆赞革,徐境,等.青花菜BoDof5.3基因的克隆及渍水胁迫表达特征分析[J].江苏农业学报,2020,(06):1498.[doi:doi:10.3969/j.issn.1000-4440.2020.06.020]
 PEI Xu-li,JING Zan-ge,XU Jing,et al.Cloning and expression analysis of BoDof5.3 gene under waterlogging stress in broccoli[J].,2020,(08):1498.[doi:doi:10.3969/j.issn.1000-4440.2020.06.020]
[3]高颖,杨亚苓,李慕紫,等.青花菜WRI4基因的克隆、生物信息学分析及表达载体的构建[J].江苏农业学报,2021,(03):710.[doi:doi:10.3969/j.issn.1000-4440.2021.03.021]
 GAO Ying,YANG Ya-ling,LI Mu-zi,et al.Cloning, bioinformatic analysis and expression vector construction of broccoli WRI4 gene[J].,2021,(08):710.[doi:doi:10.3969/j.issn.1000-4440.2021.03.021]

备注/Memo

备注/Memo:
收稿日期:2023-10-16基金项目:天津市科技计划种业科技重大专项(18ZXZYNC00160);天津市大学生创新训练计划项目(202210061104)作者简介:邹宜芯(1999-),女,四川成都人,硕士研究生,主要从事蔬菜栽培生理研究。(E-mail)913788290@qq.com通讯作者:李慧,(E-mail)lihui@tjau.edu.cn
更新日期/Last Update: 2024-09-18