[1]徐垒,张莹,罗媛,等.黄腐酸对Ca(NO3)2胁迫下菜薹幼苗生长及生理生化特性的影响[J].江苏农业学报,2024,(08):1371-1378.[doi:doi:10.3969/j.issn.1000-4440.2024.08.002]
 XU Lei,ZHANG Ying,LUO Yuan,et al.Effect of fulvic acid on the growth and physiological and biochemical characteristics of Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee. under Ca(NO3)2 stress[J].,2024,(08):1371-1378.[doi:doi:10.3969/j.issn.1000-4440.2024.08.002]
点击复制

黄腐酸对Ca(NO3)2胁迫下菜薹幼苗生长及生理生化特性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年08期
页码:
1371-1378
栏目:
遗传育种·生理生化
出版日期:
2024-08-30

文章信息/Info

Title:
Effect of fulvic acid on the growth and physiological and biochemical characteristics of Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee. under Ca(NO3)2 stress
作者:
徐垒1张莹12罗媛1高富成1吴雪2曹凯2叶林1
(1.宁夏大学葡萄酒与园艺学院,宁夏银川750021;2.江苏省农业科学院农业设施与装备研究所/农业农村部长江中下游设施农业工程重点实验室,江苏南京210014)
Author(s):
XU Lei1ZHANG Ying12LUO Yuan1GAO Fucheng1WU Xue2CAO Kai2YE Lin1
(1.College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China;2.Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)
关键词:
菜薹黄腐酸Ca(NO3)2胁迫光合特性抗氧化
Keywords:
Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee.fulvic acidCa(NO3)2 stressphotosynthetic characteristicsantioxidant
分类号:
TQ441.23
DOI:
doi:10.3969/j.issn.1000-4440.2024.08.002
文献标志码:
A
摘要:
土壤次生盐渍化会严重影响菜薹的产量及品质,黄腐酸作为一种全水溶性的有机物质,对缓解植物盐胁迫具有积极作用。本研究以金秋红二号红菜薹为试验材料,探究在Ca(NO3)2胁迫下外源施用黄腐酸对菜薹幼苗生长发育和生理生化指标的影响。结果表明,与15 mmol/L Ca(NO3)2(CK)相比,80 mmol/L Ca(NO3)2处理显著抑制了菜薹的生长,而与80 mmol/L Ca(NO3)2处理相比,80 mmol/L Ca(NO3)2+100 μmol/L黄腐酸处理可以显著缓解Ca(NO3)2对菜薹的抑制作用,促进菜薹幼苗的生长,增加菜薹幼苗的净光合速率及气孔导度。同时与80 mmol/L Ca(NO3)2处理相比,80 mmol/L Ca(NO3)2+100 μmol/L黄腐酸处理可以显著降低菜薹幼苗叶片相对电导率和丙二醛含量,减少O2·-、H2O2的积累,增强抗氧化酶(超氧化物歧化酶、过氧化氢酶、抗坏血酸酶)活性。上述结果表明,外源施用黄腐酸可以通过提高菜薹的光合和抗氧化能力来缓解Ca(NO3)2胁迫,本研究结果可为黄腐酸在缓解蔬菜盐胁迫中的应用提供理论依据。
Abstract:
The yield and quality of Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee. can be seriously affected by soil secondary salinization. As a full water-soluble organic substance, fulvic acid (FA) played an active role in relieving salt stress in plants. The effects of fulvic acid (FA) on the growth and physiological and biochemical indexes of B. campestris L. seedlings under Ca(NO3)2 stress were studied, using Jinqiuhong No.2 as the test material. The results showed that compared with 15 mmol/L Ca(NO3)2 (CK), 80 mmol/L Ca(NO3)2 treatment significantly inhibited the growth of B. campestris L., while compared with 80 mmol/L Ca(NO3)2 treatment, 80 mmol/L Ca(NO3)2 + 100 μmol/L fulvic acid treatment could significantly alleviate the inhibitory effect of Ca(NO3)2 on B. campestris L., promote the growth of B. campestris L. seedlings, and increase the net photosynthetic rate and stomatal conductance. At the same time, compared with 80 mmol/L Ca(NO3)2 treatment, 80 mmol/L Ca(NO3)2+ 100 μmol/L fulvic acid treatment could significantly reduce the relative electrical conductivity and malondialdehyde content in leaves of B. campestris L. seedlings, reduce the accumulation of O·-2 and H2O2, and enhance the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase). The results indicated that exogenous application of fulvic acid could alleviate Ca(NO3)2 stress by improving photosynthetic and antioxidant ability of B. campestris L.. The results of the study can provide a theoretical basis for the application of fulvic acid in relieving salt stress of vegetables.

参考文献/References:

[1]肖柳英. WRKY转录因子在低温调控菜心抽薹开花中的功能研究[D]. 广州:华南农业大学,2018.
[2]蒋学勤,温学萍,徐苏萌,等. 宁夏供港蔬菜发展现状与对策[J]. 中国蔬菜,2021(7):1-4.
[3]赵鹏志. 水肥耦合对贺兰县供港蔬菜光合、品质及产量的影响[D]. 银川:宁夏大学,2020.

[4]王葆芳,杨晓晖,江泽平. 引黄灌区水资源利用与土壤盐渍化防治[J]. 干旱区研究,2004,21(2):139-143.
[5]缑倩倩,韩致文,王国华. 中国西北干旱区灌区土壤盐渍化问题研究进展[J]. 中国农学通报,2011,27(29):246-250.
[6]辛正琦,代欢欢,辛余凤,等. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报,2021,47(10):2001-2011.
[7]QU F, PENG T L, JIA Y J, et al. Adjusting leaf nitrogen allocation could promote photosynthetic capacity,and nitrogen accumulation in Cucumis sativus L.[J]. Environmental and Experimental Botany,2022,198:104855.
[8]XLAB C, AUB D, SSB E, et al. Responses of carbohydrate metabolism enzymes in leaf and spike to CO2 elevation and nitrogen fertilization and their relations to grain yield in wheat[J]. Environmental and Experimental Botany,2019,164:149-156.
[9]杜应琼,王富华,李乃坚,等. 广东省蔬菜硝酸盐含量的调查与分析[J]. 生态环境,2004(1):19-22.
[10]巨晓棠,张翀. 论合理施氮的原则和指标[J]. 土壤学报,2021,58(1):1-13.
[11]ZHANG H Y, ZHANG C R, SUN P, et al. Optimizing planting density and nitrogen application to enhance profit and nitrogen use of summer maize in Huanghuaihai region of China[J]. Scientific Reports,2022,12(1):2704-2704.
[12]李永胜,杜建军,王浩,等. 氮磷钾配施对菜心生长及土壤养分状况的影响[J]. 广东农业科学,2011,38(2):53-56.
[13]ZHANG Y, YAO Q, SHI Y, et al. Elevated CO2 improves antioxidant capacity,ion homeostasis,and polyamine metabolism in tomato seedlings under Ca(NO3)2-induced salt stress[J]. Scientia Horticulturae,2020,273:109644.
[14]YANG Y, LU Z Y, LI J, et al. Effects of Ca(NO3)2 stress on mitochondria and nitrogen metabolism in roots of cucumber seedlings[J]. Agronomy-Basel,2020,10(2). DOI:10.3390/agronomy10020167.
[15]HU X, XU Z, XU W, et al. Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress[J]. Plant Physiology & Biochemistry,2015,92:1-10.
[16]孙彤彤,武春成,宋士清. 外源水杨酸(SA)、油菜素内酯(BR)浸种对Ca(NO3)2胁迫下黄瓜幼苗光合特性及叶片解剖结构的影响[J]. 江苏农业学报,2019,35(5):1184-1190.
[17]WEN X, CHEN J, CHEN H, et al. Hydrogen-rich water ameliorates the toxicity induced by Ca(NO3)2 excess through enhancing antioxidant capacities and re-establishing nitrate homeostasis in Brassica campestris spp. chinensis L. seedlings[J]. Acta Physiologiae Plantarum,2021,43:1-12.
[18]CORRE W J, BREIMER T. Nitrate and nitrite in vegetables[M]. Wageningen:Centre for Agricultural Publishing and Documentation,1979.
[19]陈云增,李天奇,马建华,等. 沙颍河流域典型癌病高发区居民硝酸盐和亚硝酸盐暴露及健康风险[J]. 环境科学学报,2018,38(1):363-371.
[20]BAHADORAN Z, MIRMIRAN P, GHASEMI A,et al. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis[J]. Nitric Oxide,2015,47:65-76.
[21]高纪超,石元亮,魏占波,等. 腐殖酸与硝化抑制剂配施对油菜生长及品质的影响[J]. 中国土壤与肥料,2021(4):218-223.
[22]马垚. 钼肥配施菌剂对小白菜生长及土壤硝酸盐含量的影响[D]. 扬州:扬州大学,2022.
[23]余高,陈芬,谢英荷,等. 化肥减施、有机肥配施对辣椒产量及品质的影响[J]. 北方园艺,2020(4):47-53.
[24]DU J, SHU J, SHAO Q S, et al. Mitigative effects of spermidine on photosynthesis and carbon-nitrogen balance of cucumber seedings under Ca(NO3)2 stress[J]. Journal of Plant Research,2016,129:79-91.
[25]王凤华,赵田园,李雨霏,等. 双氰胺对樱桃萝卜硝酸盐积累及根系生长的影响[J]. 中国土壤与肥料,2022,305(9):133-138.
[26]NARDI S, PIZZEGHELLO D, MUSCOLO A, et al. Physiological effects of humic substances on higher plants[J]. Soil Biology & Biochemistry,2002,34(11):1536.
[27]郭新送,苏秀荣,范仲卿,等. 盐分胁迫下控释尿素配施腐植酸对棉花幼苗生长和抗氧化系统的影响[J]. 土壤,2021,53(1):112-117.
[28]薄录吉,李冰,李彦,等. 腐植酸尿素在农业生产和面源污染防控中的研究与应用[J]. 中国土壤与肥料,2020(4):240-251.
[29]朱会调,高登涛,白茹,等. 黄腐酸对土壤养分、葡萄品质和产量的影响[J]. 新疆农业科学,2021,58(4):672-681.
[30]袁子琪,韩哲,陈登论,等. 黄腐酸复合肥对土壤养分及小麦生长的影响[J]. 腐植酸,2020(6):38-43.
[31]高云晓,庞元湘,毛培利,等. 黄腐酸有机肥对盐胁迫下刺槐幼苗生长的影响[J]. 西南林业大学学报(自然科学),2019,39(2):36-43.
[32]WANG Y M, YANG R I, ZHENG J Y, et al. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.)[J]. Ecotoxicology and Environmental Safety,2019,167:10-19.
[33]庞强强,孙光闻,蔡兴来,等. 硝酸盐胁迫下黄腐酸对小白菜活性氧代谢及相关基因表达的影响[J]. 分子植物育种,2018,16(17):5812-5820.
[34]束秀玉. CO2加富对盐胁迫下西瓜幼苗生长及生理生化特性的影响[J]. 河南农业科学,2020,49(12):107-114.
[35]WU X, WU C N, BIAN Z H, et al. Abscisic acid and reactive oxygen species were involved in slightly acidic electrolyzed water-promoted seed germination in watermelon[J]. Scientia Horticulturae,2022,291:110581.
[36]马欣,宗静,祝宁. 黄腐酸叶面肥对草莓育苗效果的影响[J]. 中国果树,2019,196(2):57-59.
[37]KUMAR M. 黄腐酸对三种典型障碍土壤特性和作物生长的改良[D]. 北京:中国农业科学院,2019.
[38]周海涛,张艳阳,赵孟圆,等. S-诱抗素和黄腐酸对干旱胁迫下皮燕麦抗旱生理特性的影响[J]. 农学学报,2020,10(4):7-13.
[39]齐琪,马书荣,徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种,2020,18(8):2741-2746.

[40]林雪婷,高莉娜,宋希亮,等. 生物炭、黄腐酸、黑曲霉对狼尾草苗期生长及光合特性的影响[J]. 中国草地学报,2022,44(6):77-84.

[41]ZHAO C Z, ZHANG H, SONG C P, et al. Mechanisms of plant responses and adaptation to soil salinity[J]. Innovation,2020,1(1):100017.

相似文献/References:

[1]高富成,李海俊,穆晓国,等.化肥减量处理下蚯蚓-牛粪协同作用对菜薹生长及土壤中重金属锌、砷和铬含量的影响[J].江苏农业学报,2024,(06):1078.[doi:doi:10.3969/j.issn.1000-4440.2024.06.015]
 GAO Fucheng,LI Haijun,MU Xiaoguo,et al.Synergistic effects of earthworms and cow manure on the growth of flowering Chinese cabbage and contents of heavy metals zinc, arsenic and chromium in soil under reduced chemical fertilization[J].,2024,(08):1078.[doi:doi:10.3969/j.issn.1000-4440.2024.06.015]

备注/Memo

备注/Memo:
收稿日期:2023-10-24基金项目:宁夏回族自治区重点研发计划项目(2021BBF02006);国家重点研发计划项目(2021YFD1600300)作者简介:徐垒(2000-),男,山东菏泽人,硕士研究生,研究方向为蔬菜栽培学。(E-mail)m19853568090@163.com通讯作者:叶林,(E-mail)yelin.3993@163.com;曹凯,(E-mail)kcao@jaas.ac.cn
更新日期/Last Update: 2024-09-18