[1]漆海霞,杨泽康,陈宇,等.农业信息采集机器人关键技术研究现状与发展趋势[J].江苏农业学报,2024,(07):1351-1360.[doi:doi:10.3969/j.issn.1000-4440.2024.07.022]
 QI Haixia,YANG Zekang,CHEN Yu,et al.Research status and development trend of key technologies of agricultural information acquisition robot[J].,2024,(07):1351-1360.[doi:doi:10.3969/j.issn.1000-4440.2024.07.022]
点击复制

农业信息采集机器人关键技术研究现状与发展趋势()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年07期
页码:
1351-1360
栏目:
综述
出版日期:
2024-07-30

文章信息/Info

Title:
Research status and development trend of key technologies of agricultural information acquisition robot
作者:
漆海霞杨泽康陈宇冯发生
(华南农业大学工程学院,广东广州510642)
Author(s):
QI HaixiaYANG ZekangCHEN YuFENG Fasheng
(College of Engineering, South China Agricultural University, Guangzhou 510642, China)
关键词:
农业信息采集机器人自主导航机器视觉智能控制智能云处理
Keywords:
agricultural information acquisition robotautonomous navigationmachine visionintelligent controlintelligent cloud processing
分类号:
S237
DOI:
doi:10.3969/j.issn.1000-4440.2024.07.022
文献标志码:
A
摘要:
智慧农业是农业现代化的标志,农业信息采集是智慧农业的重要环节之一,相较于人工信息采集具有的低效、准确度不高等不足,利用农业信息采集机器人代替人工进行农情信息采集,可降低农作强度、提升生产效率。本文针对不同场景下的农业信息采集机器人,概括了近几十年国内外农业信息采集机器人的应用现状,总结了自主导航技术、机器视觉技术、智能控制技术、智能云处理技术四大关键技术的研究现状,并结合农业生产中环境非结构化、作业对象具有娇嫩性等特点,指出了目前关键技术存在的问题,并提出复合导航技术、多机智能感知、视觉监测算法优化、通用化智能控制、智能云管控平台是未来的发展趋势。
Abstract:
Smart agriculture is the symbol of agricultural modernization, and agricultural information collection is one of the important links of smart agriculture. Compared with inefficient and inaccurate manual information collection, the use of agricultural information collection robots for agricultural information collection can reduce agricultural intensity and improve production efficiency. Aiming at agricultural information acquisition robots under different scenarios, this paper summarized the application status of agricultural information acquisition robots at home and abroad in recent decades, and summarized the research status of four key technologies, namely autonomous navigation, machine vision, intelligent control and intelligent cloud processing. Based on the characteristics of unstructured environment and delicate operation objects in agricultural production, the paper pointed out the problems existing in the current key technologies, and put forward that composite navigation technology, multi-intelligence sensing, visual monitoring algorithm optimization, universal intelligent control, intelligent cloud management and control platform were the future development trends.

参考文献/References:

[1]罗锡文,廖娟,臧英,等. 我国农业生产的发展方向:从机械化到智慧化[J]. 中国工程科学,2022,24(1):46-54.
[2]罗锡文,廖娟,胡炼,等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报,2021,42(6):8-17,5.
[3]赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报,2021,42(6):1-7.
[4]赵春江. 智慧农业发展现状及战略目标研究[J]. 农业工程技术,2019,39(6):14-17.
[5]罗锡文,廖娟,邹湘军,等. 信息技术提升农业机械化水平[J]. 农业工程学报,2016,32(20):1-14.
[6]张刚. 农业信息采集机器人结构及控制系统设计[D]. 哈尔滨:东北林业大学,2016:1-2.
[7]赵静娟,郑怀国,董瑜,等. 全球农业机器人研发趋势预测及对我国的启示[J]. 中国农机化学报,2021,42(4):157-162.
[8]GRIFT T, ZHANG Q, KONDO N, et al. A review of automation and robotics for the bio-industry[J]. Journal of Biomechatronics Engineering,2008,1(1):37-54.
[9]IIDA M, KANG D, TANIWAKI M, et al. Localization of CO2 source by a hexapod robot equipped with an anemoscope and a gas sensor[J]. Computers and Electronics in Agriculture,2008,63(1):73-80.
[10]BAK T, JAKOBSEN H. Agricultural robotic platform with four wheel steering for weed detection[J]. Biosystems Engineering,2004,87(2):125-136.
[11]NAGASAKA Y, ZHANG Q, GRIFT T E, et al. Control system design for an autonomous field watching-dog robot[C]//International Conference on Automation Technology for Off-road Equipment. Kyoto:ATOE,2004:298-304.
[12]胡娜. 农田信息采集机器人本体研制[D]. 南京:南京林业大学,2009:9-61.
[13]刘成龙,章永年,王睿,等. 面向农情信息采集的小型四足柔性机器人设计[J]. 机械设计,2017,34(12):15-19.
[14]HE L L, FANG W T, ZHAO G N, et al. Fruit yield prediction and estimation in orchards: a state-of-the-art comprehensive review for both direct and indirect methods[J]. Computers and Electronics in Agriculture,2022,195:106812.
[15]ANASTASIOU E, BALAFOUTIS A, DARRA N, et al. Satellite and proximal sensing to estimate the yield and quality of table grapes[J]. Agriculture,2018,8(7):1-15.
[16]王伟,李超艺,刘九庆,等. 地空两用农业信息采集机器人行走机构仿真[J]. 农机化研究,2019,41(6):26-31.
[17]陈成坤. 空-地协同环境下果园信息共享平台设计与实现[D]. 杨凌:西北农林科技大学,2021.
[18]许俊云,漆海霞,黎鉴文,等.温室作物生长信息检测相机的电驱平台设计[J].农机化研究,2023,45(9):54-59.
[19]漆海霞,陈宇,周子森,等.全地形农业作物信息监测移动平台及监测方法:CN115384643B[P]. 2023-11-28.
[20]郭庆华,吴芳芳,庞树鑫,等. Crop 3D—基于激光雷达技术的作物高通量三维表型测量平台[J]. 中国科学:生命科学,2016,46(10):1210-1221.
[21]王旭,敬濯瑄,姚园园,等. 无线传感系统的设施农业移动机器人监测系统设计[J]. 电子制作,2022,30(13):25-26,40.
[22]冯青春,王秀,邱权,等. 畜禽舍防疫消毒机器人设计与试验[J]. 智慧农业(中英文),2020,2(4):79-88.
[23]刘艳昌,赵海生,李泽旭,等. 基于机器人的生猪健康养殖智能监控系统设计[J]. 中国农机化学报,2021,42(8):187-195.
[24]连京华,李惠敏,祝伟,等. 家禽生产智能巡检机器人的设计[J]. 中国家禽,2019,41(18):72-75.
[25]QI H X, THOMAS M B, ZHANG Z G, et al. Preliminary laboratory test on navigation accuracy of an autonomous robot for measuring air quality in livestock buildings[J]. International Journal of Agricultural and Biological Engineering,2016,9(2):29-39.
[26]USHER C T, DALEY W D, JOFFE B P, et al. Robotics for poultry house management[C]. Washington: American Society of Agricultural and Biological Engineers,2017:1.
[27]李道亮,包建华. 水产养殖水下作业机器人关键技术研究进展[J]. 农业工程学报,2018,34(16):1-9.
[28]KARIMANZIRA D, JACOBI M, PFTZENREUTER T, et al. First testing of an AUV mission planning and guidance system for water quality monitoring and fish behavior observation in net cage fish farming[J]. Information Processing in Agriculture,2014,1(2):131-140.
[29]SAKAMOTO T, VAN PHUNG C, KOTERA A, et al. Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery[J]. Landscape and Urban Planning,2009,92(1):34-46.
[30]蒋浩. 基于RTK技术的农业机械自动导航系统研究[D]. 杭州:浙江大学,2019.
[31]姬长英,周俊. 农业机械导航技术发展分析[J]. 农业机械学报,2014,45(9):44-54.
[32]季宇虹,王让会. 全球导航定位系统GNSS的技术与应用[J]. 全球定位系统,2010,35(5):69-75.
[33]姚洋,郭承军. 北斗卫星导航系统在精准农业中的应用研究[C]. 成都:中国卫星导航系统管理办公室学术交流中心,2021:110-113.
[34]ZHANG Q, WANG Z D, JONES D, et al. Bin-dog: a robotic platform for bin management in orchards[J]. Robotics,2017,6(2):12.
[35]陈黎卿,许鸣,柏仁贵,等. 高地隙植保机辅助驾驶系统设计与试验[J]. 农业机械学报,2019,50(9):25-32.
[36]刘阳春,苑严伟,张俊宁,等. 深松作业远程管理系统设计与试验[J]. 农业机械学报,2016,47(增刊1):43-48.
[37]王诚龙,王吉旭,葛宝玉,等. 北斗农机作业全信息质量在线监测终端[C]//中国卫星导航定位协会.卫星导航定位与北斗系统应用2017——深化北斗应用开创中国导航新局面.北京:测绘出版社,2017:186-190.
[38]王家辉. 基于YOLOv3的水田除草机器人视觉导航技术研究[D]. 广州:华南理工大学,2020:2-3.
[39]杨文钰,李东兵,隋毅,等. 2020年国外不依赖卫星的导航技术发展综述[J].飞航导弹,2021(1):25-30,70.
[40]CHOI K H, HAN S K, HAN S H, et al. Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields[J]. Computers and Electronics in Agriculture,2015,113:266-274.
[41]张翔淼. 复杂环境下农业机器人视觉导航技术研究[D]. 天津:天津理工大学,2022.
[42]陈浩,王光林,郝询. 移动机器人的路径规划综述与发展趋势[J]. 物流技术与应用,2020,25(10):158-160.
[43]DIJKSTRA E. A note on two problems in connexi on with graphs[J]. Numerische Mathematik,1951,1(1):269-271.
[44]熊壬浩,刘羽. A*算法的改进及并行化[J]. 计算机应用,2015,35(7):1843-1848.
[45]LADD A M, KAVRAKI L E. Measure theoretic analysis of prob-abilistic path planning[J]. Transaction on Robotics and Automation,20(2):229-242.
[46]LAVALLE S M. Planning algorithms[M]. Cambridge: Cambridge University Press,2006.
[47]姜龙腾,迟瑞娟,马悦琦,等.基于栅格法的农业机器人路径规划方法研究[J].农机化研究,2024,46(6):19-24.
[48]THRUN S. Learning metric-topological maps for indoor mobile robot navigation[J]. Artificial Intelligence,1998,99(1):21-71.
[49]BROOKS R A. Solving the find-path problem by good representation of free space[M]//COX I J, WILFONG G T. Autonomous robot vehicles. Berlin, Heidelberg: Springer-Verlag, 1983:290-297.
[50]KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research,1986,5(1):90-98.
[51]陈奕梅,康雪晶,徐鹏. 复杂环境下多移动机器人控制算法研究[J]. 电光与控制,2021,28(4):48-52.
[52]李鹏,温素芳. 基于模糊控制的路径规划算法的实现[J]. 杭州电子科技大学学报,2007,27(6):82-86.
[53]徐力,刘云华,王启富. 自适应遗传算法在机器人路径规划的应用[J]. 计算机工程与应用,2020,56(18):36-41.
[54]殷建军,董文龙,梁利华,等. 复杂环境下农业机器人路径规划优化方法[J]. 农业机械学报,2019,50(5):17-22.
[55]赵辉,郝梦雅,王红君,等. 基于改进A*算法与天牛须搜索算法的农业机器人路径规划方法[J]. 科学技术与工程,2019,19(31):185-190.
[56]杨涛,李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报,2021,42(3):171-181.
[57]傅隆生,宋珍珍,王东,等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报,2020,25(2):105-120.
[58]FU L S, FENG Y L, MAJEED Y, et al. Kiwifruit detection in field images using Faster R-CNN with ZFNet[J]. IFAC-PapersOnLine,2018,51(17):45-50.
[59]李寒,陶涵虓,崔立昊,等. 基于SOM-K-means算法的番茄果实识别与定位方法[J]. 农业机械学报,2021,52(1):23-29.
[60]杨涛,李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报,2021,42(3):171-181.
[61]PICON A, SEITZ M, ALVAREZ-GILA A, et al. Crop conditional convolutional neural networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions[J]. Computers and Electronics in Agriculture,2019,167:105093.
[62]KAO I H, HSU Y W, YANG Y Z, et al. Determination of Lycopersicon maturity using convolutional autoencoders[J]. Scientia Horticulturae,2019,256:108538.
[63]陈晶,朱启兵,黄敏,等. 基于机器视觉的茶小绿叶蝉识别方法研究[J]. 激光与光电子学进展,2018,55(1):348-355.
[64]王鹏新,田惠仁,张悦,等. 基于深度学习的作物长势监测和产量估测研究进展[J]. 农业机械学报,2022,53(2):1-14.
[65]樊艳英,张自敏,陈冠萍,等. 基于物联网的精准农业玉米长势监测分析系统研究[J]. 农机化研究,2018,40(8):223-227.
[66]冯文斌. 基于无人机多光谱遥感的夏玉米长势监测及产量估测[D]. 泰安:山东农业大学,2022.
[67]贾彪. 基于计算机视觉技术的棉花长势监测系统构建[D]. 石河子:石河子大学,2014.
[68]NGUYEN T T, VANDEVOORDE K, WOUTERS N, et al. Detection of red and bicoloured apples on tree with an RGB-D camera[J]. Biosystems Engineering,2016,146:33-44.
[69]刘成良,贡亮,苑进,等. 农业机器人关键技术研究现状与发展趋势[J]. 农业机械学报,2022,53(7):1-22,55.
[70]SHAMSHIRI R R, HAMEED I A, PITONAKOVA L, et al. Simulation software and virtual environments for acceleration of agricultural robotics:features highlights and performance comparison[J]. International Journal of Agricultural and Bioengineering,2018,11(4):1-16.
[71]GRIMSTAD L, FROM P J. The ThorvaldⅡ agricultural robotic system[J]. Robotics,2017,6(4):1-24.
[72]COLEMAN G, SALTER W, WALSH M. OpenWeedLocator (OWL): an open-source,low-cost device for fallow weed detection[J]. AgriRxiv,2022,12(1):170.
[73]张强. 大棚作业多功能农业机器人研究[D]. 武汉:湖北工业大学,2019.
[74]李道亮,李震. 无人农场系统分析与发展展望[J]. 农业机械学报,2020,51(7):1-12.
[75]PAVN-PULIDO N, LPEZ-RIQUELME J A, TORRES R, et al. New trends in precision agriculture: a novel cloud-based system for enabling data storage and agricultural task planning and automation[J]. Precision Agriculture,2017,18:1038-1068.
[76]KAJOL R, AKSHAY K K. Automated agricultural field analysis and monitoring system using IOT[J]. International Journal of Information Engineering and Electronic Business,2018,12(2):1-17.
[77]刘凯. 基于“云-边-端”的果园信息监测平台研究[D]. 长春:吉林大学,2022.

相似文献/References:

[1]李盛辉,夏春华,姬长英,等.自主导航农业车辆的全景视觉同时定位与地图创建[J].江苏农业学报,2017,(03):598.[doi:doi:10.3969/j.issn.1000-4440.2017.03.017]
 LI Sheng-hui,XIA Chun-hua,JI Chang-ying,et al.Simutaneous localization and mapping for autonomously-navigating agricultural vehicle based on panoramic vision[J].,2017,(07):598.[doi:doi:10.3969/j.issn.1000-4440.2017.03.017]

备注/Memo

备注/Memo:
收稿日期:2023-06-11基金项目:国家重点研发计划项目(2021YPD2000701-1);广东省重点研发项目(2019B020214005)作者简介:漆海霞(1969-),女,湖南醴陵人,博士,副教授,主要从事农情信息采集机器人及远程传输系统研究。(E-mail)qihaixia_scau@126.com
更新日期/Last Update: 2024-09-14