[1]徐彤,王英琪,李渊,等.小分子热激蛋白在植物应对高温胁迫中的作用[J].江苏农业学报,2024,(07):1343-1350.[doi:doi:10.3969/j.issn.1000-4440.2024.07.021]
 XU Tong,WANG Yingqi,LI Yuan,et al.Role of small molecule heat shock proteins in plants’ response to high temperature stress[J].,2024,(07):1343-1350.[doi:doi:10.3969/j.issn.1000-4440.2024.07.021]
点击复制

小分子热激蛋白在植物应对高温胁迫中的作用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年07期
页码:
1343-1350
栏目:
综述
出版日期:
2024-07-30

文章信息/Info

Title:
Role of small molecule heat shock proteins in plants’ response to high temperature stress
作者:
徐彤1王英琪1李渊2安本泽1蒋敏2杨文飞3吴云飞1
(1.扬州大学生物科学与技术学院,江苏扬州225009;2.江苏省作物基因组学和分子育种重点实验室/扬州大学农学院,江苏扬州225009;3.江苏徐淮地区淮阴农业科学研究所,江苏淮安223001)
Author(s):
XU Tong1WANG Yingqi1LI Yuan2ANSAH Ebenezerottopah1JIANG Min2YANG Wenfei3WU Yunfei1
(1.College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;2.Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Agricultural College of Yangzhou University, Yangzhou 225009, China;3.Huaiyin Institute of Agricultural Sciences in Xuhuai Region of Jiangsu, Huai’an 223001, China)
关键词:
小分子热激蛋白高温胁迫激素植物
Keywords:
small molecule heat shock proteinheat stresshormoneplant
分类号:
Q946.1
DOI:
doi:10.3969/j.issn.1000-4440.2024.07.021
文献标志码:
A
摘要:
小分子热激蛋白(sHSPs)是一类不依赖于腺嘌呤核苷三磷酸并具有分子伴侣功能的功能保守型蛋白质。sHSPs在植物受到高温胁迫时产生的热激反应中尤为重要,通过防止错误蛋白质的热集聚、与其他热激蛋白互作,促使错误蛋白质被降解或重新折叠,进而帮助植株响应高温。同时,sHSP的表达受到热休克元件、热休克转录因子、长链非编码RNA(lncRNA)、小分子RNA(miRNA)及一些植物激素的调控。本文总结了植物sHSPs结构功能、调控机制及相关研究进展,着重阐述了植物sHSPs在高温胁迫下的响应机制,为研究植物响应高温的机制提供参考。
Abstract:
Small molecule heat shock proteins (sHSPs) are a type of functionally conserved proteins that do not depend on ATP and have molecular chaperone function. sHSPs are particularly important in the heat shock response of plants under high temperature stress. By preventing the thermal aggregation of error proteins and interacting with other heat shock proteins, sHSPs promoted the degradation or refolding of error proteins, thereby helped plants to respond to high temperatures. Besides, the expression of sHSP was regulated by heat shock elements, heat shock transcription factors, long non-coding RNA (lncRNA), micro RNA (miRNA) and some plant hormones. This article reviewed the gene structure, function, regulatory mechanism and related research progress of plant sHSPs, focused on the response mechanism of plant sHSPs under high temperature stress, so as to provide a reference for studying the mechanism of plants’ response to high temperature.

参考文献/References:

[1]ROMERO H L A J. Climate change 2023:synthesis report. Contribution of working groups Ⅰ,Ⅱ and Ⅲ to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva:IPCC,2023.
[2]KAN Y, MU X R, GAO J, et al. The molecular basis of heat stress responses in plants[J]. Molecular Plant,2023,16(10):1612-1634.
[3]LEE B H, WON S H, LEE H S ,et al. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice[J]. Gene,2000,245(2):283-290.
[4]PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(27):9971-9975.
[5]于玉凤,杨颖慧,潘素君,等. 肌肽对高温胁迫下水稻种子萌发及其生理特性的影响[J/OL]. 分子植物育种,2022:1-12. https://kns.cnki.net/kcms/detail/46.1068.s.20220325.1059.002.html.
[6]余欣,童飞,詹妮,等. 干旱-高温交叉胁迫对水稻幼苗光合特性的影响[J]. 干旱地区农业研究,2022,40(3):72-78.
[7]穰中文,周清明. 水稻高温胁迫的生理响应及耐热机理研究进展[J]. 中国农学通报,2015,31(21):249-258.
[8]张明静,韩笑,胡雪,等. 不同种植方式下温度升高对水稻产量及同化物转运的影响[J]. 中国农业科学,2021,54(7):1537-1352.
[9]周宇娇,张伟杨,杨建昌. 高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍的研究进展[J]. 作物杂志,2022(4):1-8.
[10]张彩霞. 高温影响水稻韧皮部同化物转运及代谢的作用机制及调控[D]. 北京:中国农业科学院,2019.
[11]CHEN D, LYU M, KOU X X, et al. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B[J]. Molecular Cell,2022,82(16):3015-3029.
[12]JUNG J H, BARBOSA A D, HUTIN S, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis[J]. Nature,2020,585(7824):256-260.
[13]MA W, GUAN X, LI J, et al. Mitochondrial small heat shock protein mediates seed germination via thermal sensing[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(10):4716-4721.
[14]LEE G J, ROSEMAN A M, SAIBIL H R, et al. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state[J]. The EMBO Journal,1997,16(3):659-671.
[15]LEE G J, VIERLING E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein[J]. Plant Physiology,2000,122(1):189-197.
[16]EHRNSPERGER M, GRAEBER S, GAESTEL M, et al. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation[J]. The EMBO Journal,1997,16(2):221-229.
[17]RITOSSA F. A new puffing pattern induced by temperature shock and DNP in drosophila[J]. Experientia,1962,18(12):571-573.
[18]PELHAM H R. A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene[J]. Cell,1982,30(2):517-528.
[19]黄祥富,黄上志,傅家瑞,等. 植物热激蛋白的功能及其基因表达的调控[J]. 植物学通报,1999,16(5):530-536.
[20]WATERS E R, VIERLING E. Plant small heat shock proteins - evolutionary and functional diversity[J]. New Phytologist,2020,227(1):24-37.
[21]ZHANG N, JIANG J. Research advances of small heat shock protein gene family (sHSPs) in plants[J]. Plant Physiology Journal,2017,53(6):943-948.
[22]WATERS E R. The evolution,function,structure,and expression of the plant sHSPs[J]. Journal of Experimental Botany,2013,64(2):391-403.
[23]BASHA E, JONES C, BLACKWELL A E, et al. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones[J]. Journal of Molecular Biology,2013,425(10):1683-1696.
[24]BERNFUR K, RUTSDOTTIR G, EMANUELSSON C. The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants[J]. Protein Science,2017,26(9):1773-1784.
[25]JAGADISH S V K, MUTHURAJAN R, OANE R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2010,61(1):143-156.
[26]SCHARF K D, SIDDIQUE M, VIERLING E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins)[J]. Cell Stress & Chaperones,2001,6(3):225-237.
[27]SARKAR N K, KIM Y K, GROVER A. Rice sHsp genes:genomic organization and expression profiling under stress and development[J]. Bmc Genomics,2009,10:393.
[28]YU J H, CHENG Y, FENG K, et al. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses[J]. Frontiers in Plant Science,2016,7:1215.
[29]MUTHUSAMY S K, DALAL M, CHINNUSAMY V, et al. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat[J]. Journal of Plant Physiology,2017,211:100-113.
[30]QI H H, CHEN X K, LUO S, et al. Genome-wide identification and characterization of heat shock protein 20 genes in maize[J]. Life,2022,12(9):1397.
[31]KIM D H, XU Z Y, HWANG I. AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling[J]. Plant Cell Reports,2013,32(12):1953-1963.
[32]KIM D H, XU Z Y, NA Y J, et al. Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis[J]. Plant Physiology,2011,157(1):132-146.
[33]GUAN J C, JINN T L, YEH C H, et al. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.)[J]. Plant Molecular Biology,2004,56(5):795-809.
[34]郭虹霞,王创云,赵丽,等. 水稻中2个小分子热激蛋白基因启动子的序列分析及功能鉴定[J]. 西北农业学报,2019,28(7):1079-1086.
[35]SATO Y, YOKOYA S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein,sHSP17.7[J]. Plant Cell Reports,2008,27(2):329-334.
[36]SARKAR N K, KOTAK S, AGARWAL M, et al. Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings[J]. Planta,2019,251(1):26.
[37]CHEN X H, LIN S K, LIU Q L, et al. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics,2014,1844(4):818-828.
[38]缪乐怡,范金岚,詹嘉涛,等. 水稻小分子热激蛋白基因Os02g0782500对逆境胁迫和激素的响应分析[J]. 广东农业科学,2023,50(12):112-119.
[39]SINGH G, SARKAR N K, GROVER A. Hsp70,sHsps and ubiquitin proteins modulate HsfA6a-mediated Hsp101 transcript expression in rice (Oryza sativa L.)[J]. Physiological Plant,2021,173(4):2055-2067.
[40]KIM K H, ALAM I, KIM Y G, et al. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue[J]. Biotechnology Letters,2012,34(2):371-377.
[41]LUND A A, RHOADS D M, LUND A L, et al. In vivo modifications of the maize mitochondrial small heat stress protein,HSP22[J]. Journal of Biological Chemistry,2001,276(32):29924-29929.
[42]SUN W, BERNARD C, COTTE B V D, et al. At-HSP17.6A,encoding a small heat-shock protein in Arabidopsis,can enhance osmotolerance upon overexpression[J]. Plant J,2001,27(5):407-415.
[43]SUN L P, LIU Y, KONG X P, et al. ZmHSP16.9,a cytosolic class I small heat shock protein in maize (Zea mays),confers heat tolerance in transgenic tobacco[J]. Plant Cell Reports,2012,31(8):1473-1484.
[44]CHAUHAN H, KHURANA N, NIJHAVAN A, et al. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress[J]. Plant,Cell & Environment,2012,35(11):1912-1931.
[45]SHUKLA V, UPADHYAY R K, TUCKER M L,et al. Transient regulation of three clustered tomato class-I small heat-shock chaperone genes by ethylene is mediated by SlMADS-RIN transcription factor[J]. Scientific Reports,2017,7(1):6474.
[46]KUMAR M, BUSCH W, BIRKE H, et al. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis[J]. Molecular Plant,2009,2(1):152-165.
[47]李春子.烟草细胞质小分子热激蛋白HSP17.8基因的克隆及胁迫诱导表达特性分析[D]. 海口:海南大学,2010.
[48]LIU H C, LIAO H T, CHARNG Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis[J]. Plant Cell Environment,2011,34(5):738-751.
[49]GONG C, PANG Q Q, LI Z L, et al. Genome-wide identification and characterization of Hsf and Hsp gene families and gene expression analysis under heat stress in eggplant (Solanum melongema L.)[J]. Horticulturae,2021,7(6):149.
[50]CHARNG Y Y, LIU H C, LIU N Y, et al. A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology,2007,143(1):251-262.
[51]NOVER L, BHARTI K, DRING P, et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress Chaperones,2001,6(3):177-189.
[52]YOSHIDA T, OHAMA N, NAKAJIMA J, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression[J]. Mol Genet Genomics,2011,286(5/6):321-332.
[53]SCHARF K D, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family:structure,function and evolution[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2012,1819(2):1014-1019.
[54]BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors[J]. Journal of Biosciences,2004,29(4):471-487.
[55]YASUDA H, SAGEHASHI Y, SHIMOSAKA E, et al. Generation of transgenic rice expressing heat shock protein genes under cool conditions[J]. Plant Biotechnology,2013,30(5):489-496.
[56]CHENG Q, ZHOU Y H, LIU Z W, et al. An alternatively spliced heat shock transcription factor,OsHSFA2dI,functions in the heat stress-induced unfolded protein response in rice[J]. Plant Biology,2015,17(2):419-429.
[57]WU N, YAO Y L, XIANG D H, et al. A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of JASMONATE ZIM-DOMAIN genes in rice[J]. New Phytologist,2022,234(4):1315-1331.
[58]LI N, XU R, LI Y H. Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology,2019,70:435-463.
[59]BASAK J, NITHIN C. Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting[J]. Frontiers in Plant Science,2015,6:1001.
[60]BALAZADEH S. A ‘hot’ cocktail:the multiple layers of thermomemory in plants[J]. Current Opinion in Plant Biology,2022,65:102147.
[61]STIEF A, ALTMANN S, HOFFMANN K, et al. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. Plant Cell,2014,26(4):1792-1807.
[62]GUAN Q M, LU X Y, ZENG H T, et al. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis[J]. The Plant Journal:for Cell and Molecular Biology,2013,74 5:840-851.
[63]CHANG C. Ethylene biosynthesis,perception,and response[J]. Journal of Plant Growth Regulation,2007,26(2):89-91.
[64]LIU X L, JI P, YANG H T, et al. Priming effect of exogenous ABA on heat stress tolerance in rice seedlings is associated with the upregulation of antioxidative defense capability and heat shock-related genes[J]. Plant Growth Regulation,2022,98(1):23-38.
[65]BI H H, ZHAO Y, LI H H, et al. Wheat heat shock factor TaHsfA6f increases ABA levels and enhances tolerance to multiple abiotic stresses in transgenic plants[J]. International Journal of Molecular Sciences,2020,21(9):3121.
[66]HUANG Y C, NIU C Y, YANG C R, et al. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J]. Plant Physiology,2016,172(2):1182-1199.
[67]王华丽,陈宁,杜晗蔚,等. 高温胁迫下ABA调控sHSP26对玉米叶绿体的保护作用[J]. 河南农业大学学报,2019,53(6):831-838.
[68]王前前. 玉米热激转录因子ZmHsfA4α的抗旱功能研究[D].合肥:安徽农业大学,2017.
[69]王世威,屈仁军,彭佳铭,等. 丹参小分子热激蛋白SmHSP21.8基因克隆、诱导模式和原核表达[J]. 药学学报,2022,57(6):1909-1917.
[70]SUZUKI N, MILLER G, MORALES J, et al. Respiratory burst oxidases:the engines of ROS signaling[J]. Current Opinion in Plant Biology,2011,14(6):691-699.
[71]KAYA H, TAKEDA S, KOBAYASHI M J, et al. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases[J]. Plant Journal,2019,98(2):291-300.
[72]REZAUL I M, FENG B, CHEN T, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum,2019,165(3):644-663.
[73]SANTIAGO J P, SHARKEY T D. Pollen development at high temperature and role of carbon and nitrogen metabolites[J]. Plant Cell Environment,2019,42(10):2759-2775.
[74]REZAUL I M, BAOHUA F, TINGTING C, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum,2019,165(3):644-663.
[75]HOLLAND C K, JEZ J M. Structural biology of jasmonic acid metabolism and responses in plants[M]. Grenchen:Springer International Publishing,2018:67-82.
[76]DING C K, WANG C Y, GROSS K C, et al. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate[J]. Plant Science,2001,161(6):1153-1159.
[77]HAMILTON E W, COLEMAN J S. Heat-shock proteins are induced in unstressed leaves of Nicotiana attenuata (Solanaceae) when distant leaves are stressed[J]. American Journal of Botany,2001,88(5):950-955.
[78]CLARKE S M, CRISTESCU S M, MIERSCH O, et al. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana[J]. New Phytologist,2009,182(1):175-187.
[79]ZHU T, HERRFURTH C, XIN M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth[J]. Nature Communications,2021,12(1):4804.
[80]BAKSHI A, SHEMANSKY J M, CHANG C, et al. History of Research on the plant hormone ethylene[J]. Journal of Plant Growth Regulation,2015,34:809-827.
[81]MATTOO A K, UPADHYAY R K. Plant hormones:some glimpses on biosynthesis,signaling networks,and crosstalk[M]. Singapore:Springer Singapore,2019:227-246.
[82]YANG S F, HOFFMAN N E. Ethylene biosynthesis and its regulation in higher plants[J]. Annual Review of Plant Biology,1984,35:155-189.
[83]KENDE H. Ethylene biosynthesis[J]. Annual Review of Plant Biology,1993,44:283-307.
[84]RAVANEL S, GAKIRE B, JOB D, et al. The specific features of methionine biosynthesis and metabolism in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(13):7805-7812.
[85]UPADHYAY R K, TUCKER M L, MATTOO A K. Ethylene and RIPENING INHIBITOR modulate expression of SlHSP17.7A,B class I small heat shock protein genes during tomato fruit ripening[J]. Frontiers in Plant Science,2020,11:975.
[86]HAN J P, XIE X X, ZHANG Y, et al. Evolution of the DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN subfamily in green plants[J]. Plant Physiological,2022,190(1):421-440.
[87]YAMAGUCHI S. Gibberellin metabolism and its regulation[J]. Annual Review of Plant Biology,2008,59:225-251.
[88]DU R, NIU S H, LIU Y, et al. The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers[J]. Scientific Reports,2017,7(1):16637.
[89]LIU X, HOU X L. Antagonistic regulation of ABA and GA in metabolism and signaling pathways[J]. Front in Plant Science,2018,9:251.
[90]TOH S, IMAMURA A, WATANABE A, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds[J]. Plant Physiology,2008,146(3):1368-1385.
[91]LUO L X, XIE Y L, YU S J, et al. The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa)[J]. New Phytologist,2023,237(6):2163-2179.

相似文献/References:

[1]梅瑜,王继华,蔡时可,等.金线莲应答高温胁迫的蛋白质组学分析[J].江苏农业学报,2020,(06):1389.[doi:doi:10.3969/j.issn.1000-4440.2020.06.006]
 MEI Yu,WANG Ji-hua,CAI Shi-ke,et al.Proteomics analysis on Anoectochilus roxburghii in response to high temperature stress[J].,2020,(07):1389.[doi:doi:10.3969/j.issn.1000-4440.2020.06.006]
[2]邱爽,张军,何佳琦,等.大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定[J].江苏农业学报,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
 QIU Shuang,ZHANG Jun,HE Jia-qi,et al.Expression of soybean GmGolS2-1 induced by heat stress and identification of GmGolS2-1 transgenic tobacco[J].,2021,(07):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
[3]张斌,杨昕霞,袁志辉.水稻响应热胁迫核心基因的筛选与鉴定[J].江苏农业学报,2021,(04):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]
 ZHANG Bin,YANG Xin-xia,YUAN Zhi-hui.Screening and identification of core genes responding to heat stress in rice[J].,2021,(07):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]
[4]徐鹏,贺一哲,尤翠翠,等.高温胁迫导致水稻颖花败育的机理及其防御措施研究进展[J].江苏农业学报,2023,(01):255.[doi:doi:10.3969/j.issn.1000-4440.2023.01.029]
 XU Peng,HE Yi-zhe,YOU Cui-cui,et al.Research progress on the mechanism and defense measures of rice spikelet abortion caused by high temperature stress[J].,2023,(07):255.[doi:doi:10.3969/j.issn.1000-4440.2023.01.029]
[5]张雪莲,罗德旭,杨红,等.外源褪黑素和硒对高温胁迫下辣椒生理特性和抗氧化系统的影响[J].江苏农业学报,2023,(08):1729.[doi:doi:10.3969/j.issn.1000-4440.2023.08.013]
 ZHANG Xue-lian,LUO De-xu,YANG Hong,et al.Effects of exogenous melatonin and selenium on physiological properties and antioxidant systems of chilies under high temperature stress[J].,2023,(07):1729.[doi:doi:10.3969/j.issn.1000-4440.2023.08.013]
[6]李萌楠,乐秀虎,周阳,等.二氢卟吩铁调控辣椒对高温胁迫的耐性及相关基因的表达[J].江苏农业学报,2024,(06):1070.[doi:doi:10.3969/j.issn.1000-4440.2024.06.014]
 LI Mengnan,LE Xiuhu,ZHOU Yang,et al.Regulation of iron chlorine e6 on high temperature stress tolerance and related gene expression in pepper[J].,2024,(07):1070.[doi:doi:10.3969/j.issn.1000-4440.2024.06.014]
[7]张杰,单宝来,田永生,等.葡萄HSP17基因的合成与功能分析[J].江苏农业学报,2017,(03):503.[doi:doi:10.3969/j.issn.1000-4440.2017.03.004]
 ZHANG Jie,SHAN Bao-lai,TIAN Yong-sheng,et al.Synthesis and functional analysis of HSP17 gene in grape[J].,2017,(07):503.[doi:doi:10.3969/j.issn.1000-4440.2017.03.004]

备注/Memo

备注/Memo:
收稿日期:2024-01-28基金项目:江苏省作物基因组学与分子遗传学重点实验室开放基金项目(PL202302);江苏省大学生创新创业训练计划项目(202311117053Z)作者简介:徐彤(2002-), 女, 江苏宿迁人, 本科, 研究领域为植物生理。 (E-mail)282955844@qq.com通讯作者:吴云飞,(E-mail)006949@yzu.edu.cn
更新日期/Last Update: 2024-09-14