参考文献/References:
[1]PADALKAR G, MANDLIK R, SUDHAKARAN S, et al. Necessity and challenges for exploration of nutritional potential of staple-food grade soybean[J]. Journal of Food Composition and Analysis,2023,117:105093.
[2]陈雨生,江一帆,张瑛. 中国大豆生产格局变化及其影响因素[J]. 经济地理,2022,42(3):87-94.
[3]宋晨旭,于翀宇,邢永超,等. 基于OpenCV的大豆籽粒多表型参数获取算法[J]. 农业工程学报,2022,38(20):156-163.
[4]XIANG S, WANG S Y, XU M, et al. YOLO POD:a fast and accurate multi-task model for dense Soybean Pod counting[J]. Plant Methods,2023,19(1):8.
[5]ZHOU W, CHEN Y J, LI W H, et al. SPP-extractor:automatic phenotype extraction for densely grown soybean plants[J]. The Crop Journal,2023,11(5):1569-1578.
[6]周华茂,王婧,殷华,等. 基于改进Mask R-CNN模型的秀珍菇表型参数自动测量方法[J]. 智慧农业,2023,5(4):117-126.
[7]CHEN S, ZOU X J, ZHOU X Z, et al. Study on fusion clustering and improved yolov5 algorithm based on multiple occlusion of Camellia oleifera fruit[J]. Computers and Electronics in Agriculture,2023,206:107706.
[8]RONG J C, ZHOU H, ZHANG F, et al. Tomato cluster detection and counting using improved YOLOv5 based on RGB-D fusion[J]. Computers and Electronics in Agriculture,2023,207:107741.
[9]UZAL L C, GRINBLAT G L, NAMíAS R, et al. Seed-per-pod estimation for plant breeding using deep learning[J]. Computers and Electronics in Agriculture,2018,150:196-204.
[10]闫壮壮, 闫学慧,石嘉, 等. 基于深度学习的大豆豆荚类别识别研究[J]. 作物学报,2020,46(11):1771-1779.
[11]郭瑞,于翀宇,贺红,等. 采用改进YOLOv4算法的大豆单株豆荚数检测方法[J]. 农业工程学报,2021,37(18):179-187.
[12]宁姗,陈海涛,赵秋多,等. 基于IM-SSD+ACO算法的整株大豆表型信息提取[J]. 农业机械学报,2021,52(12):182-190.
[13]王跃亭,王敏娟,孙石,等. 基于图像处理和聚类算法的待考种大豆主茎节数统计[J]. 农业机械学报,2020,51(12):229-237.
[14]张小斌,谢宝良,朱怡航,等. 基于图像处理技术的菜用大豆豆荚高通量表型采集与分析[J]. 核农学报,2022,36(3):602-612.
[15]赵岩,张人天,董春旺,等. 采用改进Unet网络的茶园导航路径识别方法[J]. 农业工程学报,2022,38(19):162-171.
[16]杨蜀秦,王帅,王鹏飞,等. 改进YOLOX检测单位面积麦穗[J]. 农业工程学报,2022,38(15):143-149.
[17]翔云,陈其军,宋栩杰,等. 基于深度学习的菜用大豆荚型表型识别方法[J]. 核农学报,2022,36(12):2391-2399.
[18]JIANG P Y, ERGU D, LIU F Y, et al. A review of Yolo algorithm developments[J]. Procedia Computer Science,2022,199:1066-1073.
[19]DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO:challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications,2023,82(6):9243-9275.
[20]LI S, YAN Z Z, GUO Y X, et al. SPM-IS:an auto-algorithm to acquire a mature soybean phenotype based on instance segmentation[J]. The Crop Journal,2022,10(5):1412-1423.
[21]JUNG Y, BYUN S, KIM B, et al. Harnessing synthetic data for enhanced detection of Pine Wilt Disease:an image classification approach[J]. Computers and Electronics in Agriculture,2024,218:108690.
[22]BARRIENTOS-ESPILLCO F, GASC E, LPEZ-GONZLEZ C I, et al. Semantic segmentation based on deep learning for the detection of Cyanobacterial harmful algal blooms (CyanoHABs) using synthetic images[J]. Applied Soft Computing,2023,141:110315.
[23]ABBAS A, JAIN S, GOUR M, et al. Tomato plant disease detection using transfer learning with C-GAN synthetic images[J]. Computers and Electronics in Agriculture,2021,187:106279.
[24]YANG S, ZHENG L H, YANG H J, et al. A synthetic datasets based instance segmentation network for high-throughput soybean pods phenotype investigation[J]. Expert Systems with Applications,2022,192:116403.
[25]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. Vancouver:IEEE,2023:7464-7475.
[26]YANG X, YAN J C. Arbitrary-oriented object detection with circular smooth label[C]. Glasgow:Springer,2020:677-694.
[27]GIRSHICK R. Fast r-cnn[C]. Santiago:IEEE,2015:1440-1448.