[1]郑秋玲,王建萍,肖慧琳,等.葡萄IRT基因的克隆、鉴定及其对氨基酸-铁复合肥的响应特征[J].江苏农业学报,2024,(05):913-921.[doi:doi:10.3969/j.issn.1000-4440.2024.05.016]
 ZHENG Qiuling,WANG Jianping,XIAO Huilin,et al.Cloning and identification of IRT genes and their response to amino acid-iron compound fertilizer in grape[J].,2024,(05):913-921.[doi:doi:10.3969/j.issn.1000-4440.2024.05.016]
点击复制

葡萄IRT基因的克隆、鉴定及其对氨基酸-铁复合肥的响应特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年05期
页码:
913-921
栏目:
园艺
出版日期:
2024-05-30

文章信息/Info

Title:
Cloning and identification of IRT genes and their response to amino acid-iron compound fertilizer in grape
作者:
郑秋玲12王建萍1肖慧琳1史圣朋3宁友峥3杜远鹏45管雪强5唐美玲125宋志忠123
(1.山东省烟台市农业科学研究院葡萄良种选育与良法栽培山东省工程研究中心,山东烟台265500;2.鲁东大学农林工程研究院,山东烟台264025;3.剑桥大学植物系,英国剑桥CB2 3EA;4.山东农业大学园艺科学与工程学院,山东泰安271018;5.山东省酿酒葡萄与葡萄酒技术创新中心/中粮长城葡萄酒(蓬莱)有限公司,山东烟台264000)
Author(s):
ZHENG Qiuling12WANG Jianping1XIAO Huilin1SHI Shengpeng3NING Youzheng3DU Yuanpeng45GUAN Xueqiang5TANG Meiling125SONG Zhizhong123
(1.Shandong Engineering Research Center for Grape Breeding and Cultivation, Yantai Academy of Agricultural Sciences, Yantai 265500, China;2.The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai 264025, China;3.Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, United Kingdom;4.College of Horticulture Science and Engineering, Shandong Agriculture University, Tai’an 271018, China;5.Shandong Technology Innovation Center of Wine Grape and Wine/COFCO Great Wall Wine (Penglai) Co., Ltd., Yantai 264000, China)
关键词:
葡萄铁调节转运蛋白铁肥VvIRT基因
Keywords:
grapeiron-regulated transporteriron fertilizerVvIRT gene
分类号:
Q786;S663.1
DOI:
doi:10.3969/j.issn.1000-4440.2024.05.016
摘要:
为揭示葡萄铁素吸收与转运的分子机制,明确铁调节转运蛋白编码基因VvIRT在葡萄果实不同发育时期的表达差异及其对叶面喷施氨基酸-铁复合肥的响应特征,本研究以烟酿1号为材料,分离并克隆葡萄铁调节转运蛋白编码基因IRT,分析IRT基因分布、结构及其编码蛋白质的保守基序等特征;设置叶面喷施氨基酸-铁复合肥处理,利用实时荧光定量PCR分析烟酿1号IRT基因在果实不同发育时期的表达差异及其对叶面喷施处理的响应特征。结果表明:在葡萄基因组中克隆得到10个VvIRT基因(VvIRT1~VvIRT10),分布在7条染色体上。其编码蛋白质均含有Fe2+ 转运蛋白或锌/铁转运体(PF02535),属于典型的铁调节蛋白。VvIRT1、VvIRT2、VvIRT4、VvIRT5、VvIRT8等基因编码的蛋白质属于碱性蛋白质,而其他5个蛋白质属于酸性蛋白质。VvIRT5蛋白和VvIRT8蛋白属于不稳定蛋白,其他8个蛋白为稳定蛋白。VvIRT7蛋白主要定位于液泡膜,其他蛋白质均主要定位于细胞质膜。VvIRT7在葡萄果实不同发育时期各组织中的整体表达水平都是最高的,其次为VvIRT9和VvIRT6,而VvIRT1、VvIRT3、VvIRT5、VvIRT8和VvIRT10在葡萄果实发育过程中均无表达。叶面喷施铁肥处理下, 韧皮部中VvIRT7表达量和果实及韧皮部中VvIRT9表达量在花后35 d(幼果期)至70 d(转色期)明显增加,而在花后85 d(第2次膨大期)至115 d(成熟期),韧皮部和叶片中VvIRT7和VvIRT9表达量明显减少。因此,葡萄VvIRT基因对叶面喷施铁肥的响应特征与果实发育时期及器官类型密切相关,VvIRT7、VvIRT9基因编码蛋白质是葡萄果实发育过程中2个重要的铁调节转运蛋白。
Abstract:
In order to reveal the molecular mechanism of iron absorption and transport in grape, and to clarify the expression difference of iron regulatory transporter gene VvIRT in different development stages of grape fruit and its response characteristics to foliar application of amino acid-iron compound fertilizer, Yanniang 1 was used as the material in this study. The IRT encoding iron regulatory transporter was isolated and cloned, and the distribution and structure of IRT gene and conserved motifs of proteins encoded by IRT gene were analyzed. The expression difference of IRT gene in different development stages of Yanniang 1 fruit and its response characteristics to foliar spraying treatment were analyzed by real-time fluorescence quantitative PCR. The results showed that 10 VvIRT genes (VvIRT1-VvIRT10) were cloned from the grape genome and distributed on seven chromosomes. The encoded proteins contained Fe2+ transporters or zinc/iron transporters (PF02535), which were typical iron regulatory proteins. The proteins encoded by VvIRT1, VvIRT2, VvIRT4, VvIRT5 and VvIRT8 were alkaline proteins, while the other five proteins were acidic proteins. VvIRT5 protein and VvIRT8 protein were unstable proteins, and the other eight proteins were stable proteins. The VvIRT7 protein was mainly located in the vacuolar membrane, and the other proteins were mainly located in the plasma membrane. The overall expression level of VvIRT7 was the highest in all tissues at different developmental stages of grape fruit, followed by VvIRT9 and VvIRT6, while VvIRT1, VvIRT3, VvIRT5, VvIRT8 and VvIRT10 were not expressed during the development of grape fruit. Under foliar application of iron fertilizer, the expression levels of VvIRT7 in phloem and VvIRT9 in fruit and phloem increased significantly from 35 d after flowering (young fruit stage) to 70 d after flowering (veraison stage), while the expression levels of VvIRT7 and VvIRT9 in phloem and leaves decreased significantly from 85 d after flowering (second expansion stage) to 115 d after flowering (mature stage). Therefore, the response characteristics of VvIRT gene to foliar application of iron fertilizer are closely related to fruit development stage and organ type. The proteins encoded by VvIRT7 and VvIRT9 genes are two important iron regulatory transporters during grape fruit development.

参考文献/References:

[1]LILL R. Function and biogenesis of iron-sulphur proteins[J]. Nature,2009,460(7257):831-838.
[2]BARTO L L, ABADIA J. Iron nutrition in plants and rhizospheric microorganisms[M]. New York:Springer-Verlag,2006:85-101.
[3]BALK J, PILON M. Ancient and essential:the assembly of iron-sulfur clusters in plants[J]. Trends in Plant Science,2011,16:218-226.
[4]COUTURIER J, TOURAINE B, BRIAT J F, et al. The iron-sulfur cluster assembly machineries in plants: Current knowledge and open questions[J]. Frontiers in Plant Science,2013,4:259.
[5]张妮娜,上官周平,陈娟. 植物应答缺铁胁迫的分子生理机制及其调控[J]. 植物营养与肥料学报,2018,24(5):1365-1377.
[6]李俊成,于慧,杨素欣,等. 植物对铁元素吸收的分子调控机制研究进展[J]. 植物生理学报,2016,52(6):835-842.
[7]TAGLIAVINI M, ABADI J, ROMBOL A D, et al. Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees[J]. Journal of Plant Nutrition,2000,23:2007-2022.
[8]TAGLIAVINI M, ROMBOL A D. Iron deficiency and chlorosis in orchard and vineyard ecosystems[J]. European Journal of Agronomy,2001,15:72-92.
[9]KOBAYASHI T, NISHIZAWA N K. Iron uptake,translocation,and regulation in higher plants[J]. Annual Review of Plant Biology,2012,63:131-152.
[10]ROMHELD V, MARSCHNER H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses[J]. Plant Physiology,1986,80(1):175-180.
[11]ISHIMARU Y, SUZUKI M, TSUKAMOTO T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. Plant Journal,2006,45(3):335-346.
[12]NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition,2006,52:464-469.
[13]ZELAZNY E, VERT G. Regulation of iron uptake by IRT1: Endocytosis pulls the trigger[J]. Molecular Plant,2015,8:977-979.
[14]EIDE D, BRODERIUS M, FETT J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences,1996,93(11):5624-5628.
[15]VERT G, GROTZ N, DDALDCHAMP F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. The Plant Cell, 2002,14(6):1223-1233.
[16]FOURCROY P, TISSOT N, GAYMARD F, et al. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system[J]. Molecular Plant,2016,9(3):485.
[17]VERT G, BARBERON M, ZELAZNY E, et al. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells[J]. Planta,2009,229:1171-1179.
[18]ECKHARDT U, MARQUES A M, BUCKHOUT T J. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants[J]. Plant Molecular Biology,2001,45:437-448.
[19]LI P, QI J L, WANG L, et al. Functional expression of MxIRT1,from Malus xiaojinensis,complements an iron uptake deficient yeast mutant for plasma membrane targeting via membrane vesicles trafficking process[J]. Plant Science,2006,171:52-59.
[20]DING H, DUAN L H, LI J, et al. Cloning and functional analysis of the peanut iron transporter AhIRT1 during iron deficiency stress and intercropping with maize[J]. Journal of Plant Physiology,2010,167(12):996-1002.
[21]金昕,刘娜,申长卫,等. 杜梨IRT1基因的克隆及表达分析[J], 农业生物技术学报,2017,25(5):739-749.
[22]JAILLON O, AURY J M, NOEL B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature,2007,449(7161):463-467.
[23]王旭,封朝晖,刘蜜,等. 含氨基酸水溶肥料:NY 1429-2007[S].北京:中华人民共和国农业部,2007.
[24]SONG Z Z, MA R J, ZHANG B B, et al. Differential expression of iron-sulfur cluster biosynthesis genes during peach fruit development and ripening, and their response to iron compound spraying[J]. Scientia Horticulturae,2016,207:73-81.
[25]SHENG Y T, CHENG H, WANG L M, et al. Foliar spraying with compound amino acid-iron fertilizer increases leaf fresh weight, photosynthesis and Fe-S cluster gene expression in peach [Prunus persica (L.) Batsch][J]. Biomed Research International,2020,2020:2854795.
[26]张璐,宗亚奇,徐维华,等. 葡萄Fe-S簇装配基因的鉴定、克隆和表达特征分析[J]. 中国农业科学,2021,54(23):5068-5082.
[27]TANG M L, LI Y H, CHEN Y H, et al. Characterization and expression of ammonium transporter in peach (Prunus persica) and regulation analysis in response to external ammonium supply[J]. Phyton-International Journal of Experimental Botany,2020,89(4):925-941.
[28]王壮伟,王庆莲,夏瑾,等. 葡萄KEA家族基因的克隆、鉴定及表达分析[J]. 中国农业科学,2018,51(23):4522-4534.
[29]沈静沅,唐美玲,杨庆山,等. 葡萄钾离子通道基因VviSKOR的克隆、表达及电生理功能[J]. 中国农业科学,2020,53(15):3158-3168.
[30]宋志忠,马瑞娟,张斌斌,等. KT/HAK/KUP家族基因在桃叶片发育过程中的表达及其对钾肥施放的响应[J]. 果树学报,2016,33(6):257-267.
[31]贺晓燕,龚义勤,徐良,等. 萝卜铁转运蛋白基因RsIRT1分子特征分析[J].南京农业大学学报,2013,36(6):13-18.
[32]李志安,王伯荪,林永标,等. 植物营养转移研究进展[J]. 武汉植物学研究,2000,18:229-236.
[33]JEONG J, MERKOVICH A, CLYNE M, et al. Directing iron transport in dicots: regulation of iron acquisition and translocation[J]. Current Opinion in Plant Biology,2017,39:106-113.

相似文献/References:

[1]余阳,袁月,王继源,等.套袋及喷钙对魏可葡萄矿质元素和果实品质的影响[J].江苏农业学报,2015,(05):1134.[doi:doi:10.3969/j.issn.1000-4440.2015.05.030]
 YU Yang,YUAN Yue,WANG JI-yuan,et al.Effects of bagging treatments and calcium applications on mineral elements and fruit quality of Wink grape[J].,2015,(05):1134.[doi:doi:10.3969/j.issn.1000-4440.2015.05.030]
[2]王西成,吴伟民,巫建华,等.葡萄β-1,3-葡聚糖酶基因的克隆、序列分析及表达[J].江苏农业学报,2015,(04):899.[doi:10.3969/j.issn.1000-4440.2015.04.030]
 JP+WANG Xi-cheng,WU Wei-min,WU Jian-hua,et al.Cloning, characterization and expression analysis of beta-1,3-glucanase gene in grapevine[J].,2015,(05):899.[doi:10.3969/j.issn.1000-4440.2015.04.030]
[3]宋新新,袁月,孙海龙,等.葡萄VvGW2基因的克隆及表达[J].江苏农业学报,2015,(02):434.[doi:10.3969/j.issn.1000-4440.2015.02.033]
 SONG Xin-xin,YUAN Yue,SUN Hai-long,et al.Cloning and expression of VvGW2 gene in grape[J].,2015,(05):434.[doi:10.3969/j.issn.1000-4440.2015.02.033]
[4]张杰,单宝来,田永生,等.葡萄HSP17基因的合成与功能分析[J].江苏农业学报,2017,(03):503.[doi:doi:10.3969/j.issn.1000-4440.2017.03.004]
 ZHANG Jie,SHAN Bao-lai,TIAN Yong-sheng,et al.Synthesis and functional analysis of HSP17 gene in grape[J].,2017,(05):503.[doi:doi:10.3969/j.issn.1000-4440.2017.03.004]
[5]冯娇,王武,侯旭东,等.基于转录组测序技术探究GA3和CPPU抑制葡萄果锈产生的机理[J].江苏农业学报,2017,(04):895.[doi:doi:10.3969/j.issn.1000-4440.2017.04.026]
 FENG Jiao,WANG Wu,HOU Xu-dong,et al.Underlying mechanism of GA3 and CPPU inhibiting grape fruit russet discovered based on transcriptome sequencing[J].,2017,(05):895.[doi:doi:10.3969/j.issn.1000-4440.2017.04.026]
[6]张波,姬长英,徐伟悦,等.不同预处理下无核厚皮葡萄热泵式分段干燥特性及品质比较[J].江苏农业学报,2018,(05):1144.[doi:doi:10.3969/j.issn.1000-4440.2018.05.025]
 ZHANG Bo,JI Chang-ying,XU Wei-yue,et al.Heat-pump stage-changed drying characteristics and product quality in comparison for seedless thick-skinned grapes under different pretreatment conditions[J].,2018,(05):1144.[doi:doi:10.3969/j.issn.1000-4440.2018.05.025]
[7]高世敏,董阳,王武,等.葡萄赤霉素合成关键基因VvGA20ox2的克隆、亚细胞定位和表达分析[J].江苏农业学报,2018,(06):1331.[doi:doi:10.3969/j.issn.1000-4440.2018.06.019]
 GAO Shi-min,DONG Yang,WANG Wu,et al.Cloning, subcellular localization and expression analysis of the key gene VvGA20ox2 in gibberellin synthesis of grapevine[J].,2018,(05):1331.[doi:doi:10.3969/j.issn.1000-4440.2018.06.019]
[8]雷旺雄,卢军.葡萄采摘机器人采摘点的视觉定位[J].江苏农业学报,2020,(04):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
 LEI Wang-xiong,LU Jun.Visual positioning method for picking point of grape picking robot[J].,2020,(05):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
[9]刘帅,张亚红,刘鑫,等.不同光源补光对设施红地球葡萄果实品质的影响[J].江苏农业学报,2021,(04):949.[doi:doi:10.3969/j.issn.1000-4440.2021.04.018]
 LIU Shuai,ZHANG Ya-hong,LIU Xin,et al.Effects of different supplementary light sources on fruit quality of Red Globe grape under protected cultivation[J].,2021,(05):949.[doi:doi:10.3969/j.issn.1000-4440.2021.04.018]
[10]高磊,李慧,洪奔,等.葡萄品种钟山红玉与钟山红杂交后代的SSR鉴定及葡萄果实性状遗传倾向分析[J].江苏农业学报,2023,(01):187.[doi:doi:10.3969/j.issn.1000-4440.2023.01.022]
 GAO Lei,LI Hui,HONG Ben,et al.SSR identification and genetic tendency analysis of fruit characters of hybrid offspring of Zhongshan Hongyu and Zhongshan Hong[J].,2023,(05):187.[doi:doi:10.3969/j.issn.1000-4440.2023.01.022]

备注/Memo

备注/Memo:
收稿日期:2023-04-15基金项目:山东省重点研发计划项目(重大科技创新工程)(2022CXGC010605);国家现代农业产业技术体系建设专项(CARS-29-17);国家留学基金项目(202208370080);烟台市科技计划项目(2020XCZX026)作者简介:郑秋玲(1983-),女,山东菏泽人,硕士,助理研究员,主要从事葡萄遗传育种与分子生物学研究。(Tel)15165769956;(E-mail)zhengql0225@163.com通讯作者:宋志忠,(E-mail)Szhzh2000@163.com
更新日期/Last Update: 2024-07-13