参考文献/References:
[1]MARANGONI F, CORSELLO G, CRICELLI C, et al. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: an Italian consensus document[J]. Food & Nutrition Research,2015,59:27606.
[2]ZAHEER K. An updated review on chicken eggs:production, consumption,management aspects and nutritional benefits to human health[J]. Food & Nutrition Sciences,2015,6(13):1208-1220.
[3]GOO D, KIM J H, PARK G H, et al. Effect of heat stress and stocking density on growth performance,breast meat quality,and intestinal barrier function in broiler chickens[J]. Animals (Basel),2019,9(3):107.
[4]KHAN R U, NIKOUSEFAT Z, SELVAGGI M, et al. Effect of ascorbic acid in heat-stressed poultry[J]. Worlds Poultry Science Journal,2012,68(3):477-490.
[5]NAGA RAJA KUMARI K, NARENDRA NATH D. Ameliorative measures to counter heat stress in poultry[J]. World’s Poultry Science Journal,2018,74(1):117-130.
[6]WASTI S, SAH N, MISHRA B. Impact of heat stress on poultry health and performances, and potential mitigation strategies[J]. Animals (Basel),2020,10(8):1266.
[7]GERAERT P A, GUILLAUMIN S, LECLERCQ B. Are genetically lean broilers more resistant to hot climate?[J]. British Poultry Science,1993,34(4):643-653.
[8]MERAT P. Potential usefulness of the Na (Naked Neck) gene in poultry production[J]. World’s Poultry Science Journal,1986,42(2):124-142.
[9]SOMES R G. International registry of poultry genetic stocks[J]. Bulletin Storrs Agricultural Experiment Station University of Connecticut,1988,94(92):50-57.
[10]PITEL F, BERG R, COQUERELLE G, et al. Mapping the Naked Neck (NA) and Polydactyly (PO) mutants of the chicken with microsatellite molecular markers[J]. Genetics Selection Evolution,2000,32(1):73-86.
[11]MOU C, PITEL F, GOURICHON D, et al. Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering[J]. PLoS Biology,2011,9(3):e1001028.
[12]ZORICIC S, MARIC I, BOBINAC D, et al. Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans[J]. Journal of Anatomy,2003,202(Pt 3):269-277.
[13]余哲琪,田佳迎,李启黉,等. p38 MAPK抑制剂对热应激雌性雏鸡主要生殖激素分泌的影响[J]. 中国家禽,2021,43(1):76-80.
[14]NORAMLY S, MORGAN B A. BMPs mediate lateral inhibition at successive stages in feather tract development[J]. Development,1998(19):125.
[15]JUNG H S, FRANCIS-WEST P H, WIDELITZ R B, et al. Local inhibitory action of BMPs and their relationships with activators in feather formation:implications for periodic patterning[J]. Developmental Biology,1998,196(1):11-23.
[16]MOU C, JACKSON B, SCHNEIDER P, et al. Generation of the primary hair follicle pattern[J]. National Academy of Sciences,2006,103:9075-9080.
[17]SICK S, REINKER S, TIMMER J, et al. Wnt and DKK determine hair follicle spacing through a reaction-diffusion mechanism[J]. Science,2006,314(5804):1447-1450.
[18]NORAMLY S, FREEMAN A, MORGAN B A. Beta-catenin signaling can initiate feather bud development[J]. Development,1999,126(16):3509-3521.
[19]WIDELITZ R B, JIANG T X, LU J, et al. Beta-catenin in epithelial morphogenesis:conversion of part of avian foot scales into feather buds with a mutated beta-catenin[J]. Developmental Biology,2000,219(1):98-114.
[20]ANDL T, REDDY S T, GADDAPARA T, et al. Wnt signals are required for the initiation of hair follicle development[J]. Developmental Cell,2002,2(5):643-653.
[21]MANDLER M, NEUBSER A. FGF signaling is required for initiation of feather placode development[J]. Development,2004,131(14):3333-3343.
[22]SONG H K, LEE S H, GOETINCK P F. FGF-2 signaling is sufficient to induce dermal condensations during feather development[J]. Developmental Dynamics,2004,231(4): 741-749.
[23]CHEN S, ZHOU Y, CHEN Y, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018,34(17):i884-i890.
[24]KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[25]ANDERS S, PYL P T, HUBER W. HTSeq--a Python framework to work with high-throughput sequencing data[J]. Bioinformatics,2015,31(2):166-169.
[26]ROBERTS A, TRAPNELL C, DONAGHEY J, et al. Improving RNA-Seq expression estimates by correcting for fragment bias[J]. Genome Biology,2011,12(3): R22.
[27]王宇栋. ERK/Wnt信号通路调控吉林白鹅胚胎期皮肤毛囊生长发育的研究[D]. 长春:吉林农业大学,2023.
[28]DHOUAILLY D. A new scenario for the evolutionary origin of hair, feather, and avian scales[J]. Journal of Anatomy,2009,214(4):587-606.
[29]HUBBARD J K, UY J A, HAUBER M E, et al. Vertebrate pigmentation: from underlying genes to adaptive function[J]. Trends in Genetics,2010,26(5):231-239.
[30]YUE Z, JIANG T X, WU P, et al. Sprouty/FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae[J]. Developmental Biology,2012,372(1):45-54.
[31]王睿智. 济宁青山羊毛囊发育特性与EGF、IGF2基因差异表达的研究[D]. 泰安:山东农业大学,2011.
[32]DASGUPTA R, FUCHS E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation[J]. Development,1999,126(20):4557-4568.
[33]NIIMORI D, KAWANO R, FELEMBAN A, et al. Tsukushi controls the hair cycle by regulating TGF-β1 signaling[J]. Developmental Biology,2012,372(1):81-87.
[34]SONG L L, CUI Y, YU S J, et al. Expression characteristics of BMP2, BMPR-IA and Noggin in different stages of hair follicle in yak skin[J]. General and Comparative Endocrinology,2018,260:18-24.
[35]NEPAL S, VENKATARAM A, MYSORE V. The role of adipose tissue in hair regeneration:a potential tool for management?[J]. Journal of Cutaneous and Aesthetic Surgery,2021,14(3):295-304.
[36]PARK P J, CHO E G. Kojyl cinnamate ester derivatives increase adiponectin expression and stimulate adiponectin-induced hair growth factors in human dermal papilla cells[J]. International Journal of Molecular Sciences,2019,20(8):1859.
[37]RAHMAN M T, SOBUR M A, ISLAM M S, et al. Zoonotic diseases:etiology,impact,and control[J]. Microorganisms,2020,8(9):1405.
[38]TORKAMANI N, RUFAUT N, JONES L, et al. The arrector pili muscle, the bridge between the follicular stem cell niche and the interfollicular epidermis[J]. Anatomical Science International,2017,92(1):151-158.
[39]KOWALSKA E, KUCHARSKA-GACA J, KUZNIACKA J, et al. Effects of legume-diet and sex of ducks on the growth performance, physicochemical traits of meat and fatty acid composition in fat[J]. Scientific Reports,2020,10(1):13465.
[40]FOUAD A M, EL-SENOUSEY H K. Nutritional factors affecting abdominal fat deposition in poultry:a review[J]. Asian-Australasian Journal of Animal Sciences,2014,27(7):1057-1068.
[41]KHAVEH N, SCHACHLER K, BERGHFER J, et al. Altered hair root gene expression profiles highlight calcium signaling and lipid metabolism pathways to be associated with curly hair initiation and maintenance in Mangalitza pigs[J]. Frontiers in Genetics,2023,14:1184015.
[42]BHAT B, YASEEN M, SINGH A, et al. Identification of potential key genes and pathways associated with the Pashmina fiber initiation using RNA-seq and integrated bioinformatics analysis[J]. Scientific Reports,2021,11(1):1766.
[43]MABROUK I, ZHOU Y, WANG S, et al. Transcriptional characteristics showed that miR-144-y/FOXO3 participates in embryonic skin and feather follicle development in zhedong white goose[J]. Animals (Basel),2022,12(16):2099.
[44]RISHIKAYSH P, DEV K, DIAZ D, et al. Signaling involved in hair follicle morphogenesis and development[J]. International Journal of Molecular Sciences,2014,15(1):1647-1670.
[45]LI C, FENG C, MA G, et al. Time-course RNA-seq analysis reveals stage-specific and melatonin-triggered gene expression patterns during the hair follicle growth cycle in Capra hircus[J]. BMC Genomics,2022,23(1):140.
[46]MIRMIRANI P, KARNIK P. Comparative gene expression profiling of senescent and androgenetic alopecia using microarray analysis[M]. Berlin, Heidelberg: Springer Berlin Heidelberg,2010:67-76.
[47]ADAM R C, YANG H, GE Y, et al. Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression[J]. Cell Stem Cell,2018,22(3):398-413.
[48]SCHIAFFINO S, ROSSI A C, SMERDU V, et al. Developmental myosins: expression patterns and functional significance[J]. Skeletal Muscle,2015,5:22.
[49]KADAJA M, KEYES B E, LIN M, et al. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors[J]. Genes & Development,2014,28(4):328-341.
[50]FANTAUZZO K A, KURBAN M, LEVY B, et al. Trps1 and its target gene SOX9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis[J]. PLoS Genetics,2012,8(11):e1003002.
[51]HO B S, VAZ C, RAMASAMY S, et al. Progressive expression of PPARGC1α is associated with hair miniaturization in androgenetic alopecia [J]. Scientific Reports,2019,9(1):8771.