[1]吴鹏飞,夏树立,于海涛,等.基于WGCNA挖掘天津猴鸡裸颈性状相关基因[J].江苏农业学报,2024,(05):881-889.[doi:doi:10.3969/j.issn.1000-4440.2024.05.013]
 WU Pengfei,XIA Shuli,YU Haitao,et al.Exploration of genes related to the naked neck trait in Tianjin-monkey chickens based on WGCNA[J].,2024,(05):881-889.[doi:doi:10.3969/j.issn.1000-4440.2024.05.013]
点击复制

基于WGCNA挖掘天津猴鸡裸颈性状相关基因()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年05期
页码:
881-889
栏目:
畜牧兽医·水产养殖·益虫饲养
出版日期:
2024-05-30

文章信息/Info

Title:
Exploration of genes related to the naked neck trait in Tianjin-monkey chickens based on WGCNA
作者:
吴鹏飞123夏树立123于海涛123赵向华123王康4
(1.天津市农业科学院畜牧兽医研究所,天津300381;2.天津市畜禽分子育种与生物技术重点实验室,天津300381;3.天津市畜禽健康养殖工程技术中心,天津300381;4.扬州大学动物科学与技术学院,江苏扬州225009)
Author(s):
WU Pengfei123XIA Shuli123YU Haitao123ZHAO Xianghua123WANG Kang4
(1.Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;2.Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China;3.Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China;4.College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China)
关键词:
天津猴鸡裸颈性状加权基因共表达网络分析(WGCNA)
Keywords:
Tianjin-monkey chickennaked neck traitweighted gene co-expression network analysis (WGCNA)
分类号:
S831.2
DOI:
doi:10.3969/j.issn.1000-4440.2024.05.013
摘要:
天津猴鸡是中国珍贵的裸颈鸡遗传资源,为在全基因组范围内探究其裸颈发育相关基因,本研究采集天津猴鸡杂交F1代裸颈鸡和常羽鸡颈部皮肤组织用于转录组测序。加权基因共表达网络分析(WGCNA)结果显示,识别到的10个基因模块中只有蓝绿色(turquoise)和蓝色(blue)基因模块与裸颈表型显著相关,共计583个基因;GO功能富集分析富集到脂滴组织、甘油三酯储存负调控以及肌肉收缩等脂肪和肌肉相关生物学过程等条目;KEGG通路分析也富集到多条脂肪代谢相关通路,包括PPAR信号通路和甘油酯代谢等;蛋白质互作网络分析结果显示ACTN2基因编码的蛋白质的连通性最高,其次是MYL10基因编码的蛋白质,另外,还发现多个密切参与毛囊发育的基因,包括SOX9和PPARGC等。本研究结果将为进一步揭示并完善鸡裸颈的形成和发育奠定基础,同时对天津猴鸡的保护、开发和利用具有重要意义。
Abstract:
Tianjin-monkey chicken is a precious genetic resource of naked neck chicken in China. To identify genes related to the naked neck phenotype at the whole-genome level, we collected neck skin tissue from the hybrid F1 generation of Tianjin-monkey chickens for transcriptome sequencing. The results showed that among the 10 gene modules identified by weighted gene co-expression network analysis (WGCNA), only the turquoise and blue modules were significantly associated with the naked neck phenotype, comprising a total of 583 genes. GO enrichment analysis revealed biological process terms related to fat and muscle, including lipid droplet organization, negative regulation of triglyceride storage and muscle contraction. KEGG pathway analysis also identified multiple pathways related to fat metabolism, such as PPAR signaling pathway and glycerolipid metabolism. Protein-protein interaction network analysis revealed that the protein encoded by ACTN2 had the highest connectivity, followed by the protein encoded by MYL10. Furthermore, several genes closely involved in hair follicle development, such as SOX9 and PPARGC, were also found. The results of this study can lay a foundation for further revealing and improving the formation and development of naked neck in chickens. Moreover, it is of great significance for the protection, development, and utilization of Tianjin-monkey chicken.

参考文献/References:

[1]MARANGONI F, CORSELLO G, CRICELLI C, et al. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: an Italian consensus document[J]. Food & Nutrition Research,2015,59:27606.
[2]ZAHEER K. An updated review on chicken eggs:production, consumption,management aspects and nutritional benefits to human health[J]. Food & Nutrition Sciences,2015,6(13):1208-1220.
[3]GOO D, KIM J H, PARK G H, et al. Effect of heat stress and stocking density on growth performance,breast meat quality,and intestinal barrier function in broiler chickens[J]. Animals (Basel),2019,9(3):107.
[4]KHAN R U, NIKOUSEFAT Z, SELVAGGI M, et al. Effect of ascorbic acid in heat-stressed poultry[J]. Worlds Poultry Science Journal,2012,68(3):477-490.
[5]NAGA RAJA KUMARI K, NARENDRA NATH D. Ameliorative measures to counter heat stress in poultry[J]. World’s Poultry Science Journal,2018,74(1):117-130.
[6]WASTI S, SAH N, MISHRA B. Impact of heat stress on poultry health and performances, and potential mitigation strategies[J]. Animals (Basel),2020,10(8):1266.
[7]GERAERT P A, GUILLAUMIN S, LECLERCQ B. Are genetically lean broilers more resistant to hot climate?[J]. British Poultry Science,1993,34(4):643-653.
[8]MERAT P. Potential usefulness of the Na (Naked Neck) gene in poultry production[J]. World’s Poultry Science Journal,1986,42(2):124-142.
[9]SOMES R G. International registry of poultry genetic stocks[J]. Bulletin Storrs Agricultural Experiment Station University of Connecticut,1988,94(92):50-57.
[10]PITEL F, BERG R, COQUERELLE G, et al. Mapping the Naked Neck (NA) and Polydactyly (PO) mutants of the chicken with microsatellite molecular markers[J]. Genetics Selection Evolution,2000,32(1):73-86.
[11]MOU C, PITEL F, GOURICHON D, et al. Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering[J]. PLoS Biology,2011,9(3):e1001028.
[12]ZORICIC S, MARIC I, BOBINAC D, et al. Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans[J]. Journal of Anatomy,2003,202(Pt 3):269-277.
[13]余哲琪,田佳迎,李启黉,等. p38 MAPK抑制剂对热应激雌性雏鸡主要生殖激素分泌的影响[J]. 中国家禽,2021,43(1):76-80.
[14]NORAMLY S, MORGAN B A. BMPs mediate lateral inhibition at successive stages in feather tract development[J]. Development,1998(19):125.
[15]JUNG H S, FRANCIS-WEST P H, WIDELITZ R B, et al. Local inhibitory action of BMPs and their relationships with activators in feather formation:implications for periodic patterning[J]. Developmental Biology,1998,196(1):11-23.
[16]MOU C, JACKSON B, SCHNEIDER P, et al. Generation of the primary hair follicle pattern[J]. National Academy of Sciences,2006,103:9075-9080.
[17]SICK S, REINKER S, TIMMER J, et al. Wnt and DKK determine hair follicle spacing through a reaction-diffusion mechanism[J]. Science,2006,314(5804):1447-1450.
[18]NORAMLY S, FREEMAN A, MORGAN B A. Beta-catenin signaling can initiate feather bud development[J]. Development,1999,126(16):3509-3521.
[19]WIDELITZ R B, JIANG T X, LU J, et al. Beta-catenin in epithelial morphogenesis:conversion of part of avian foot scales into feather buds with a mutated beta-catenin[J]. Developmental Biology,2000,219(1):98-114.
[20]ANDL T, REDDY S T, GADDAPARA T, et al. Wnt signals are required for the initiation of hair follicle development[J]. Developmental Cell,2002,2(5):643-653.
[21]MANDLER M, NEUBSER A. FGF signaling is required for initiation of feather placode development[J]. Development,2004,131(14):3333-3343.
[22]SONG H K, LEE S H, GOETINCK P F. FGF-2 signaling is sufficient to induce dermal condensations during feather development[J]. Developmental Dynamics,2004,231(4): 741-749.
[23]CHEN S, ZHOU Y, CHEN Y, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018,34(17):i884-i890.
[24]KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[25]ANDERS S, PYL P T, HUBER W. HTSeq--a Python framework to work with high-throughput sequencing data[J]. Bioinformatics,2015,31(2):166-169.
[26]ROBERTS A, TRAPNELL C, DONAGHEY J, et al. Improving RNA-Seq expression estimates by correcting for fragment bias[J]. Genome Biology,2011,12(3): R22.
[27]王宇栋. ERK/Wnt信号通路调控吉林白鹅胚胎期皮肤毛囊生长发育的研究[D]. 长春:吉林农业大学,2023.
[28]DHOUAILLY D. A new scenario for the evolutionary origin of hair, feather, and avian scales[J]. Journal of Anatomy,2009,214(4):587-606.
[29]HUBBARD J K, UY J A, HAUBER M E, et al. Vertebrate pigmentation: from underlying genes to adaptive function[J]. Trends in Genetics,2010,26(5):231-239.
[30]YUE Z, JIANG T X, WU P, et al. Sprouty/FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae[J]. Developmental Biology,2012,372(1):45-54.
[31]王睿智. 济宁青山羊毛囊发育特性与EGF、IGF2基因差异表达的研究[D]. 泰安:山东农业大学,2011.
[32]DASGUPTA R, FUCHS E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation[J]. Development,1999,126(20):4557-4568.
[33]NIIMORI D, KAWANO R, FELEMBAN A, et al. Tsukushi controls the hair cycle by regulating TGF-β1 signaling[J]. Developmental Biology,2012,372(1):81-87.
[34]SONG L L, CUI Y, YU S J, et al. Expression characteristics of BMP2, BMPR-IA and Noggin in different stages of hair follicle in yak skin[J]. General and Comparative Endocrinology,2018,260:18-24.
[35]NEPAL S, VENKATARAM A, MYSORE V. The role of adipose tissue in hair regeneration:a potential tool for management?[J]. Journal of Cutaneous and Aesthetic Surgery,2021,14(3):295-304.
[36]PARK P J, CHO E G. Kojyl cinnamate ester derivatives increase adiponectin expression and stimulate adiponectin-induced hair growth factors in human dermal papilla cells[J]. International Journal of Molecular Sciences,2019,20(8):1859.
[37]RAHMAN M T, SOBUR M A, ISLAM M S, et al. Zoonotic diseases:etiology,impact,and control[J]. Microorganisms,2020,8(9):1405.
[38]TORKAMANI N, RUFAUT N, JONES L, et al. The arrector pili muscle, the bridge between the follicular stem cell niche and the interfollicular epidermis[J]. Anatomical Science International,2017,92(1):151-158.
[39]KOWALSKA E, KUCHARSKA-GACA J, KUZNIACKA J, et al. Effects of legume-diet and sex of ducks on the growth performance, physicochemical traits of meat and fatty acid composition in fat[J]. Scientific Reports,2020,10(1):13465.
[40]FOUAD A M, EL-SENOUSEY H K. Nutritional factors affecting abdominal fat deposition in poultry:a review[J]. Asian-Australasian Journal of Animal Sciences,2014,27(7):1057-1068.
[41]KHAVEH N, SCHACHLER K, BERGHFER J, et al. Altered hair root gene expression profiles highlight calcium signaling and lipid metabolism pathways to be associated with curly hair initiation and maintenance in Mangalitza pigs[J]. Frontiers in Genetics,2023,14:1184015.
[42]BHAT B, YASEEN M, SINGH A, et al. Identification of potential key genes and pathways associated with the Pashmina fiber initiation using RNA-seq and integrated bioinformatics analysis[J]. Scientific Reports,2021,11(1):1766.
[43]MABROUK I, ZHOU Y, WANG S, et al. Transcriptional characteristics showed that miR-144-y/FOXO3 participates in embryonic skin and feather follicle development in zhedong white goose[J]. Animals (Basel),2022,12(16):2099.
[44]RISHIKAYSH P, DEV K, DIAZ D, et al. Signaling involved in hair follicle morphogenesis and development[J]. International Journal of Molecular Sciences,2014,15(1):1647-1670.
[45]LI C, FENG C, MA G, et al. Time-course RNA-seq analysis reveals stage-specific and melatonin-triggered gene expression patterns during the hair follicle growth cycle in Capra hircus[J]. BMC Genomics,2022,23(1):140.
[46]MIRMIRANI P, KARNIK P. Comparative gene expression profiling of senescent and androgenetic alopecia using microarray analysis[M]. Berlin, Heidelberg: Springer Berlin Heidelberg,2010:67-76.
[47]ADAM R C, YANG H, GE Y, et al. Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression[J]. Cell Stem Cell,2018,22(3):398-413.
[48]SCHIAFFINO S, ROSSI A C, SMERDU V, et al. Developmental myosins: expression patterns and functional significance[J]. Skeletal Muscle,2015,5:22.
[49]KADAJA M, KEYES B E, LIN M, et al. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors[J]. Genes & Development,2014,28(4):328-341.
[50]FANTAUZZO K A, KURBAN M, LEVY B, et al. Trps1 and its target gene SOX9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis[J]. PLoS Genetics,2012,8(11):e1003002.
[51]HO B S, VAZ C, RAMASAMY S, et al. Progressive expression of PPARGC1α is associated with hair miniaturization in androgenetic alopecia [J]. Scientific Reports,2019,9(1):8771.

备注/Memo

备注/Memo:
收稿日期:2023-12-20基金项目:天津市农业科学院财政种业创新研究项目(2023ZYCX011)作者简介:吴鹏飞(1991-),男,河北衡水人,博士,助理研究员,主要从事家禽育种研究工作。(E-mail)wu_p_fei@163.com通讯作者:夏树立,(E-mail)tjxmsxshl@sina.com
更新日期/Last Update: 2024-07-13