[1]裘智杰,索萌,王照贝,等.被孢霉在可持续农业生产中的应用研究进展[J].江苏农业学报,2024,(04):762-768.[doi:doi:10.3969/j.issn.1000-4440.2024.04.020]
 QIU Zhi-jie,SUO Meng,WANG Zhao-bei,et al.Research progress on the application of Mortierella in sustainable agricultural production[J].,2024,(04):762-768.[doi:doi:10.3969/j.issn.1000-4440.2024.04.020]
点击复制

被孢霉在可持续农业生产中的应用研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年04期
页码:
762-768
栏目:
综述
出版日期:
2024-04-30

文章信息/Info

Title:
Research progress on the application of Mortierella in sustainable agricultural production
作者:
裘智杰索萌王照贝杨洪岩
(东北林业大学生命科学学院,黑龙江哈尔滨150040)
Author(s):
QIU Zhi-jieSUO MengWANG Zhao-beiYANG Hong-yan
(College of Life Science, Northeast Forestry University, Harbin 150040, China)
关键词:
被孢霉土壤改良促生抗病生物防治
Keywords:
Mortierellasoil improvementgrowth promotiondisease resistancebiocontrol
分类号:
S154.3
DOI:
doi:10.3969/j.issn.1000-4440.2024.04.020
摘要:
被孢霉是典型的土壤腐生真菌,广泛存在于土壤及植物体内。近期大量研究结果表明,土壤中的被孢霉具有促进植物生长和帮助植物抑制病害的潜力。本文基于被孢霉的分类地位及共性特征,分别从被孢霉降解农业废弃物和有机污染物修复土壤,溶磷、产铁载体促进土壤营养元素转化,分泌植物激素和脂肪酸类物质促进植物生长,分泌拮抗物质调控根际微生物种群丰度,诱导植物自身防御反应提高植物抗病性等方面总结了被孢霉的研究与应用进展。并且对今后被孢霉在可持续农业生产中的应用前景进行了展望,以期为研制安全、稳定、高效的农业生产中微生物菌剂提供方向,为优化植物促生及抑病策略奠定基础。
Abstract:
Mortierella is a typical saprophytic fungus in soil and plants. Recent studies have shown that Mortierella in soil has the potential to promote plant growth and help plant control disease. Based on the taxonomic status and common characteristics of Mortierella, this article summarized the research and application progress of Mortierella in the degradation of agricultural waste and organic pollutants to remediate soil, promoting the transformation of soil nutrients through phosphorus and iron production carriers, secreting plant hormones and fatty acid substances to promote plant growth, secreting antagonistic substances to regulate the abundance of rhizosphere microbial populations, inducing plant defense reactions to improve plant disease resistance. And the future application prospects of Mortierella in sustainable agricultural production were discussed to provide direction for the development of safe, stable, and efficient microbial agents for agricultural production, and to lay a foundation for optimizing plant growth promotion and disease inhibition strategies.

参考文献/References:

[1]黄贻杰,董林林,尉广飞,等. 抗人参根腐病生防菌剂的研发与评价[J]. 中国实验方剂学杂志,2022,28(2):182-190.
[2]DE-SILVA N, BWROOKS S, LUMYONG S, et al. Use of endophytes as biocontrol agents[J]. Fungal Biology Reviews,2019,2(33):133-148.
[3]孙洪宝,李茂营,吴慧玲,等. 生防菌链霉菌对西瓜枯萎病防治及幼苗生长的影响[J]. 科学技术与工程杂志,2020,20(13):5074-5079.
[4]BRITO R A S, CAVAICVANTE G P, STOCK V M,et al. Trichoderma species show biocontrol potential against Ceratocystis wilt in mango plants[J]. European Journal of Plant Pathology,2020,3(158):781-788.
[5]WANG X H, WANG C D, LI Q, et al. Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil-borne wheat diseases[J]. Journal of Applied Microbiology,2018,6(125):1868-1880.
[6]CUI Z J, ZHANG X, YANG H H, et al. Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp.[J]. Journal of Environmental Chemical Engineering,2017,5(4):3616-3621.
[7]KOZUE S, YOSHIYUKI I, SOH S, et al. Impacts of conversion from natural forest to cedar plantation on the structure and diversity of root-associated and soil microbial communities[J]. Applied Soil Ecology,2021,167:104027.
[8]程晗,陈崇艺,朱露露,等. 1株高产油脂长孢被孢霉MD-3菌株的诱变育种[J]. 食品科学,2022,43(10):180-188.
[9]CHANG L L, LU H Q, CHEN H Q, et al. Lipid metabolism research in oleaginous fungus Mortierella alpina:current progress and future prospects[J]. Biotechnology Advances,2022,54:107794.
[10]冯娟,杨凯淇,王高红,等. 土壤生物修复技术的研究现状与发展[J]. 陕西农业科学,2023,69(3):104-109.
[11]KOECHLI C, CAMPBELL A, PEPE-RANNEY C, et al. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing[J]. Soil Biology and Biochemistry,2018,130:150-158.
[12]乔乔,王淮,姚日生,等. 长孢被孢霉PFY降解木质素的初步研究[J]. 化工进展,2012,31(增刊1):80-85.
[13]VARNAITE R, PASKEVICIUS P, RAUDONIENE V. Cellulose degradation in rye straw by micromycetes and their complexes[J]. Ekologija,2008,54(1):29-31.
[14]NAKAGAWA A, OSAWA S,HIRATA T, et al. 2,4-dichlorophenol degradation by the soil fungus Mortierella sp.[J]. Bioscience Biotechnology and Biochemistry,2006,70(2):525-527.
[15]ELLUEGAARD L, AAMAND J, KRAGELUND B B, et al. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron[J]. Biodegradation,2013,24(6):765-774.
[16]BADAWI N, RONHEDE S, OLSSON S, et al. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp.[J]. Environmental Pollution,2009,157(10):2806-2812.
[17]SU D, PU Y, GONG C J, et al. Application of cold-adaptive Pseudomonas sp. SDR4 and Mortierella alpina JDR7 co-immobilized on maize cob in remediating PAH-contaminated freeze-thawed soil[J]. Environmental Advances,2021,4:100063.
[18]SUN H Y, WU H Y, ZHOU J, et al. Incubation experiment demonstrates effects of carbon and nitrogen on microbial phosphate-solubilizing function[J]. Science China:Life Sciences,2016,60(4):436-438.
[19]RAQWAT P, DAS S, SHANKHDHAR D, et al. Phosphate-solubilizing microorganisms:mechanism and their role in phosphate solubilization and uptake[J]. Journal of Soil Science and Plant Nutrition,2020,21(1):49-68.
[20]OSORIO N W, HABTE M. Soil phosphate desorption induced by a phosphate-solubilizing fungus[J]. Communications in Soil Science and Plant Analysis,2014,45(4):451-460.
[21]LI F, ZHANG S Q, WANG Y, et al. Rare fungus,Mortierella capitata,promotes crop growth by stimulating primary metabolisms related genes and reshaping rhizosphere bacterial community[J]. Soil Biology and Biochemistry,2020,151:108017.
[22]秦超琦,吴向华,郑琨,等. 解磷菌剂对海滨盐土有效磷含量及耐盐油料植物生长的影响[J]. 生态学杂志,2009 (9):1835-1841.
[23]TAMAYO-VELEZ , OSORIO N W. Soil fertility improvement by litter decomposition and inoculation with the fungus Mortierella sp. in avocado plantations of colombia[J]. Communications in Soil Science and Plant Analysis,2018,49(2):139-147.
[24]ZHANG H S, WU X H, LI G, et al. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J]. Biology and Fertility of Soils,2011,47(5):543-554.
[25]JIAN L R, BAI X L, ZHANG H, et al. Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress[J]. Plant Biology,2019,7:e6875.
[26]WANI Z A, KUMAR A, SULTAN P, et al. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant[J]. Scientific Reports,2017,7(1):1-11.
[27]ABDALLAH H K, HO J J. Zinc ions affect siderophore production by fungi isolated from the Panax ginseng rhizosphere[J]. Journal of Microbiology and Biotechnology,2018,29(1):105-113.
[28]THIEKEN A, WINKELMANN G. Rhizoferrin:a complexone type siderophore of the Mucorales and entomophthorales (Zygomycetes)[J]. FEMS Microbiology Letters,1992,73(1/2):37-41.
[29]黎家,李传友. 新中国成立70年来植物激素研究进展[J].中国科学:生命科学,2019,49(10):1227-1281.
[30]TSUKANOVA K A, CHEBOTAR V K, MEYER J J M, et al. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis[J]. South African Journal of Botany,2017,113:91-102.
[31]OZIMEK E, JAROSZU4K-SCISEL J, BOHACZ J, et al. Synthesis of indoleacetic acid,gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions[J]. International Journal of Molecular Sciences,2018,19(10):3218-3218.
[32]JOHNSON J M, LUDWIG A, FURCH A C U, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae-induced disease development in roots[J]. Molecular Plant-Microbe Interactions,2018,32(3):351-363.
[33]WANG Y, WANG L, SUO M, et al. Regulating root fungal community using mortierella alpina for Fusarium oxysporum resistance in Panax ginseng[J]. Frontiers in Microbiology,2022,13:850917.
[34]LIAO H L, BONITO G, ROJAS J A, et al. Fungal endophytes of Populus trichocarpa alter host phenotype,gene expression,and rhizobiome composition[J]. Molecular Plant-Microbe Interactions,2019,32(7):853-864.
[35]HEWAGE K A H, YANG J F, WANG D, et al. Chemical manipulation of abscisic acid signaling:a new approach to abiotic and biotic stress management in agriculture[J]. Advanced Science,2020,7(18):2001265.
[36]LI F, CHEN L, REDMILE-GORDON M, et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degradation & Development,2018,29(6):1642-1651.
[37]YASUDA M, ISHIKAWA A, JIKUMARU Y, et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis[J]. The Plant Cell,2008,20(6):1678-1692.
[38]KANG S M, WAQAS M, HAMAYUN M, et al. Gibberellins and indole-3-acetic acid producing rhizospheric bacterium Leifsonia xyli SE134 mitigates the adverse effects of copper-mediated stress on tomato[J]. Journal of Plant Interactions,2017,12(1):373-380.
[39]HA-TRAN D M, NGUYEN T T M, HUNG S H, et al. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants:a review[J]. International Journal of Molecular Sciences,2021,22(6):3154.
[40]KUZNIAR A, WLODARCZYK K, WOLINSKA A. Agricultural and other biotechnological applications resulting from trophic plant-endophyte interactions[J]. Agronomy,2019,9(12):779.
[41]MACABUHAY A, ARSOVA B, WALKER R, et al. Modulators or facilitators? Roles of lipids in plant root-microbe interactions[J]. Trends in Plant Science,2022,27(2):180-190.
[42]唐鑫,陈海琴,姚青蔚,等. 高产花生四烯酸高山被孢霉的诱变育种研究[J]. 中国油脂,2018,43(8):104-108.
[43]李晶,阮维斌,陈永智,等. 天然脂肪酸类物质对温室连作黄瓜和番茄幼苗生长的影响[J]. 农业环境科学学报,2008,27(3):1022-1028.
[44]尹玉玲,汤泳萍,谢启鑫,等. 豆蔻酸对茄子根际土壤微生物生理类群和土壤酶活性的影响[J]. 江苏农业学报,2017,33(1):181-184.
[45]张福建,陈昱,吴超群. 外源脂肪酸对辣椒生长及根际土壤环境的影响[J]. 浙江农业学报,2017,29(5):760-766.
[46]LIU S Y, RUAN W B, LI J, et al. Biological control of phytopathogenic fungi by fatty acids[J]. Mycopathologia,2008,166(2):93-102.
[47]OLGA N S, ZHAZIRA N S, AMANKELDY K S, et al. Antifungal potential of organic acids produced by mortierella alpina [J]. International Journal of Engineering and Technology,2018,7(4):1218-1221.
[48]EROSHIN V K, DEDYUKHINA E G. Effect of lipids from Mortierella hygrophila on plant resistance to phytopathogens [J]. World Journal of Microbiology and Biotechnology,2002,18(2):165-167.
[49]MA K X, KOU J M, MUHAMMAD K U R, et al. Palmitic acid mediated change of rhizosphere and alleviation of Fusarium wilt disease in watermelon[J]. Saudi Journal of Biological Sciences,2021,28(6):3616-3623.
[50]DALE W, LYNDA R, ANNE M, et al. Antifungal activities of four fatty acids against plant pathogenic fungi[J]. Mycopathologia,2004,157(1):87-90.
[51]DHOUIB H, ZOUARI I, ABDALLAH D B I, et al. Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease[J]. Biological Control,2019,139:104092.
[52]LEE-DIAZ A S, MACHEDA D, SAHA H, et al. Tackling the context-dependency of microbial-induced resistance[J]. Agronomy,2021,11(7):1293-1293.
[53]范志金,刘秀峰,刘凤丽,等. 水杨酸在诱导系统获得抗性中的信号传导作用[J]. 农药,2004,43(6):257-260.
[54]ZOTEK U, WJCIK W. Effect of arachidonic acid elicitation on lettuce resistance towards Botrytis cinerea[J]. Scientia Horticulturae,2014,179:16-20.
[55]SAVCHENKO T, WALLEY J W, CHEHAB E W, et al. Arachidonic acid:an evolutionarily conserved signaling molecule modulates plant stress signaling networks[J]. The Plant Cell,2010,22(10):3193-3205.
[56]YANG H W, LI J, XIAO Y H, et al. An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease[J]. Frontiers in Microbiology,2017,8:2179.
[57]高芬,闫欢,王梦亮,等. 土壤微生物菌群变化对土传病害的影响及生物调控[J]. 中国农学通报,2020,36(13):160-164.
[58]宁琪,陈林,李芳,等. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报,2022,59(1):206-217.
[59]尹玉玲,刘圆,汤泳萍,等. 豆蔻酸和棕榈酸诱导茄子根际拮抗菌与黄萎菌数量消长的关系[J]. 生态学报,2015,35(20):6728-6733.
[60]LYONS R, STILLER J, POWELL J, et al. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana[J]. PLoS One,2015,10(4):e0121902.
[61]TON J, MAUCHH-MANI B. β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose[J]. The Plant Journal,2004,38:119-130.

相似文献/References:

[1]朱小梅,洪立洲,邢锦城,等.不同绿肥轮作模式对沿海滩涂土壤的改良效应[J].江苏农业学报,2022,38(06):1510.[doi:doi:10.3969/j.issn.1000-4440.2022.06.008]
 ZHU Xiao-mei,HONG Li-zhou,XING Jin-cheng,et al.Effects of different green manure rotation patterns on soil improvement in coastal area[J].,2022,38(04):1510.[doi:doi:10.3969/j.issn.1000-4440.2022.06.008]

备注/Memo

备注/Memo:
收稿日期:2023-05-15基金项目:黑龙江省自然科学基金项目(LH2022C013)作者简介:裘智杰(1999-),女,黑龙江五常人,硕士研究生,主要从事土壤微生物学研究。(E-mail)2071748338@qq.com通讯作者:杨洪岩,(E-mail)yanghy@nefu.edu.cn
更新日期/Last Update: 2024-05-22