参考文献/References:
[1]黄贻杰,董林林,尉广飞,等. 抗人参根腐病生防菌剂的研发与评价[J]. 中国实验方剂学杂志,2022,28(2):182-190.
[2]DE-SILVA N, BWROOKS S, LUMYONG S, et al. Use of endophytes as biocontrol agents[J]. Fungal Biology Reviews,2019,2(33):133-148.
[3]孙洪宝,李茂营,吴慧玲,等. 生防菌链霉菌对西瓜枯萎病防治及幼苗生长的影响[J]. 科学技术与工程杂志,2020,20(13):5074-5079.
[4]BRITO R A S, CAVAICVANTE G P, STOCK V M,et al. Trichoderma species show biocontrol potential against Ceratocystis wilt in mango plants[J]. European Journal of Plant Pathology,2020,3(158):781-788.
[5]WANG X H, WANG C D, LI Q, et al. Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil-borne wheat diseases[J]. Journal of Applied Microbiology,2018,6(125):1868-1880.
[6]CUI Z J, ZHANG X, YANG H H, et al. Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp.[J]. Journal of Environmental Chemical Engineering,2017,5(4):3616-3621.
[7]KOZUE S, YOSHIYUKI I, SOH S, et al. Impacts of conversion from natural forest to cedar plantation on the structure and diversity of root-associated and soil microbial communities[J]. Applied Soil Ecology,2021,167:104027.
[8]程晗,陈崇艺,朱露露,等. 1株高产油脂长孢被孢霉MD-3菌株的诱变育种[J]. 食品科学,2022,43(10):180-188.
[9]CHANG L L, LU H Q, CHEN H Q, et al. Lipid metabolism research in oleaginous fungus Mortierella alpina:current progress and future prospects[J]. Biotechnology Advances,2022,54:107794.
[10]冯娟,杨凯淇,王高红,等. 土壤生物修复技术的研究现状与发展[J]. 陕西农业科学,2023,69(3):104-109.
[11]KOECHLI C, CAMPBELL A, PEPE-RANNEY C, et al. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing[J]. Soil Biology and Biochemistry,2018,130:150-158.
[12]乔乔,王淮,姚日生,等. 长孢被孢霉PFY降解木质素的初步研究[J]. 化工进展,2012,31(增刊1):80-85.
[13]VARNAITE R, PASKEVICIUS P, RAUDONIENE V. Cellulose degradation in rye straw by micromycetes and their complexes[J]. Ekologija,2008,54(1):29-31.
[14]NAKAGAWA A, OSAWA S,HIRATA T, et al. 2,4-dichlorophenol degradation by the soil fungus Mortierella sp.[J]. Bioscience Biotechnology and Biochemistry,2006,70(2):525-527.
[15]ELLUEGAARD L, AAMAND J, KRAGELUND B B, et al. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron[J]. Biodegradation,2013,24(6):765-774.
[16]BADAWI N, RONHEDE S, OLSSON S, et al. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp.[J]. Environmental Pollution,2009,157(10):2806-2812.
[17]SU D, PU Y, GONG C J, et al. Application of cold-adaptive Pseudomonas sp. SDR4 and Mortierella alpina JDR7 co-immobilized on maize cob in remediating PAH-contaminated freeze-thawed soil[J]. Environmental Advances,2021,4:100063.
[18]SUN H Y, WU H Y, ZHOU J, et al. Incubation experiment demonstrates effects of carbon and nitrogen on microbial phosphate-solubilizing function[J]. Science China:Life Sciences,2016,60(4):436-438.
[19]RAQWAT P, DAS S, SHANKHDHAR D, et al. Phosphate-solubilizing microorganisms:mechanism and their role in phosphate solubilization and uptake[J]. Journal of Soil Science and Plant Nutrition,2020,21(1):49-68.
[20]OSORIO N W, HABTE M. Soil phosphate desorption induced by a phosphate-solubilizing fungus[J]. Communications in Soil Science and Plant Analysis,2014,45(4):451-460.
[21]LI F, ZHANG S Q, WANG Y, et al. Rare fungus,Mortierella capitata,promotes crop growth by stimulating primary metabolisms related genes and reshaping rhizosphere bacterial community[J]. Soil Biology and Biochemistry,2020,151:108017.
[22]秦超琦,吴向华,郑琨,等. 解磷菌剂对海滨盐土有效磷含量及耐盐油料植物生长的影响[J]. 生态学杂志,2009 (9):1835-1841.
[23]TAMAYO-VELEZ , OSORIO N W. Soil fertility improvement by litter decomposition and inoculation with the fungus Mortierella sp. in avocado plantations of colombia[J]. Communications in Soil Science and Plant Analysis,2018,49(2):139-147.
[24]ZHANG H S, WU X H, LI G, et al. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J]. Biology and Fertility of Soils,2011,47(5):543-554.
[25]JIAN L R, BAI X L, ZHANG H, et al. Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress[J]. Plant Biology,2019,7:e6875.
[26]WANI Z A, KUMAR A, SULTAN P, et al. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant[J]. Scientific Reports,2017,7(1):1-11.
[27]ABDALLAH H K, HO J J. Zinc ions affect siderophore production by fungi isolated from the Panax ginseng rhizosphere[J]. Journal of Microbiology and Biotechnology,2018,29(1):105-113.
[28]THIEKEN A, WINKELMANN G. Rhizoferrin:a complexone type siderophore of the Mucorales and entomophthorales (Zygomycetes)[J]. FEMS Microbiology Letters,1992,73(1/2):37-41.
[29]黎家,李传友. 新中国成立70年来植物激素研究进展[J].中国科学:生命科学,2019,49(10):1227-1281.
[30]TSUKANOVA K A, CHEBOTAR V K, MEYER J J M, et al. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis[J]. South African Journal of Botany,2017,113:91-102.
[31]OZIMEK E, JAROSZU4K-SCISEL J, BOHACZ J, et al. Synthesis of indoleacetic acid,gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions[J]. International Journal of Molecular Sciences,2018,19(10):3218-3218.
[32]JOHNSON J M, LUDWIG A, FURCH A C U, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae-induced disease development in roots[J]. Molecular Plant-Microbe Interactions,2018,32(3):351-363.
[33]WANG Y, WANG L, SUO M, et al. Regulating root fungal community using mortierella alpina for Fusarium oxysporum resistance in Panax ginseng[J]. Frontiers in Microbiology,2022,13:850917.
[34]LIAO H L, BONITO G, ROJAS J A, et al. Fungal endophytes of Populus trichocarpa alter host phenotype,gene expression,and rhizobiome composition[J]. Molecular Plant-Microbe Interactions,2019,32(7):853-864.
[35]HEWAGE K A H, YANG J F, WANG D, et al. Chemical manipulation of abscisic acid signaling:a new approach to abiotic and biotic stress management in agriculture[J]. Advanced Science,2020,7(18):2001265.
[36]LI F, CHEN L, REDMILE-GORDON M, et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degradation & Development,2018,29(6):1642-1651.
[37]YASUDA M, ISHIKAWA A, JIKUMARU Y, et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis[J]. The Plant Cell,2008,20(6):1678-1692.
[38]KANG S M, WAQAS M, HAMAYUN M, et al. Gibberellins and indole-3-acetic acid producing rhizospheric bacterium Leifsonia xyli SE134 mitigates the adverse effects of copper-mediated stress on tomato[J]. Journal of Plant Interactions,2017,12(1):373-380.
[39]HA-TRAN D M, NGUYEN T T M, HUNG S H, et al. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants:a review[J]. International Journal of Molecular Sciences,2021,22(6):3154.
[40]KUZNIAR A, WLODARCZYK K, WOLINSKA A. Agricultural and other biotechnological applications resulting from trophic plant-endophyte interactions[J]. Agronomy,2019,9(12):779.
[41]MACABUHAY A, ARSOVA B, WALKER R, et al. Modulators or facilitators? Roles of lipids in plant root-microbe interactions[J]. Trends in Plant Science,2022,27(2):180-190.
[42]唐鑫,陈海琴,姚青蔚,等. 高产花生四烯酸高山被孢霉的诱变育种研究[J]. 中国油脂,2018,43(8):104-108.
[43]李晶,阮维斌,陈永智,等. 天然脂肪酸类物质对温室连作黄瓜和番茄幼苗生长的影响[J]. 农业环境科学学报,2008,27(3):1022-1028.
[44]尹玉玲,汤泳萍,谢启鑫,等. 豆蔻酸对茄子根际土壤微生物生理类群和土壤酶活性的影响[J]. 江苏农业学报,2017,33(1):181-184.
[45]张福建,陈昱,吴超群. 外源脂肪酸对辣椒生长及根际土壤环境的影响[J]. 浙江农业学报,2017,29(5):760-766.
[46]LIU S Y, RUAN W B, LI J, et al. Biological control of phytopathogenic fungi by fatty acids[J]. Mycopathologia,2008,166(2):93-102.
[47]OLGA N S, ZHAZIRA N S, AMANKELDY K S, et al. Antifungal potential of organic acids produced by mortierella alpina [J]. International Journal of Engineering and Technology,2018,7(4):1218-1221.
[48]EROSHIN V K, DEDYUKHINA E G. Effect of lipids from Mortierella hygrophila on plant resistance to phytopathogens [J]. World Journal of Microbiology and Biotechnology,2002,18(2):165-167.
[49]MA K X, KOU J M, MUHAMMAD K U R, et al. Palmitic acid mediated change of rhizosphere and alleviation of Fusarium wilt disease in watermelon[J]. Saudi Journal of Biological Sciences,2021,28(6):3616-3623.
[50]DALE W, LYNDA R, ANNE M, et al. Antifungal activities of four fatty acids against plant pathogenic fungi[J]. Mycopathologia,2004,157(1):87-90.
[51]DHOUIB H, ZOUARI I, ABDALLAH D B I, et al. Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease[J]. Biological Control,2019,139:104092.
[52]LEE-DIAZ A S, MACHEDA D, SAHA H, et al. Tackling the context-dependency of microbial-induced resistance[J]. Agronomy,2021,11(7):1293-1293.
[53]范志金,刘秀峰,刘凤丽,等. 水杨酸在诱导系统获得抗性中的信号传导作用[J]. 农药,2004,43(6):257-260.
[54]ZOTEK U, WJCIK W. Effect of arachidonic acid elicitation on lettuce resistance towards Botrytis cinerea[J]. Scientia Horticulturae,2014,179:16-20.
[55]SAVCHENKO T, WALLEY J W, CHEHAB E W, et al. Arachidonic acid:an evolutionarily conserved signaling molecule modulates plant stress signaling networks[J]. The Plant Cell,2010,22(10):3193-3205.
[56]YANG H W, LI J, XIAO Y H, et al. An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease[J]. Frontiers in Microbiology,2017,8:2179.
[57]高芬,闫欢,王梦亮,等. 土壤微生物菌群变化对土传病害的影响及生物调控[J]. 中国农学通报,2020,36(13):160-164.
[58]宁琪,陈林,李芳,等. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报,2022,59(1):206-217.
[59]尹玉玲,刘圆,汤泳萍,等. 豆蔻酸和棕榈酸诱导茄子根际拮抗菌与黄萎菌数量消长的关系[J]. 生态学报,2015,35(20):6728-6733.
[60]LYONS R, STILLER J, POWELL J, et al. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana[J]. PLoS One,2015,10(4):e0121902.
[61]TON J, MAUCHH-MANI B. β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose[J]. The Plant Journal,2004,38:119-130.