[1]史文军,王学江,李峰,等.饲料中添加褐藻寡糖对脊尾白虾免疫能力的影响[J].江苏农业学报,2024,(04):698-710.[doi:doi:10.3969/j.issn.1000-4440.2024.04.014]
 SHI Wen-jun,WANG Xue-jiang,LI Feng,et al.Effects of alginate oligosaccharides supplementation on immunity of Exopalaemon carinicauda[J].,2024,(04):698-710.[doi:doi:10.3969/j.issn.1000-4440.2024.04.014]
点击复制

饲料中添加褐藻寡糖对脊尾白虾免疫能力的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年04期
页码:
698-710
栏目:
畜牧兽医·水产养殖·益虫饲养
出版日期:
2024-04-30

文章信息/Info

Title:
Effects of alginate oligosaccharides supplementation on immunity of Exopalaemon carinicauda
作者:
史文军123王学江4李峰4刘正一13迟艳4张志凯4黎慧2王李宝2孙林1万夕和2秦松13
(1.中国科学院烟台海岸带研究所,山东烟台264003;2.江苏省海洋水产研究所,江苏南通226007;3.中国科学院大学,北京100049;4.五洲丰农业科技有限公司,山东烟台264000)
Author(s):
SHI Wen-jun123WANG Xue-jiang4LI Feng4LIU Zheng-yi13CHI Yan4ZHANG Zhi-kai4LI Hui2WANG Li-bao2SUN Lin1WAN Xi-he2QIN Song13
(1.Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;2.Jiangsu Institute of Oceanology & Marine Fisheries, Nantong 226007, China;3.University of Chinese Academy of Sciences, Beijing 100049, China;4.Wuzhoufeng Agricultural Science & Technology Co., Ltd., Yantai 264000, China)
关键词:
脊尾白虾褐藻寡糖二尖梅奇酵母免疫能力
Keywords:
Exopalaemon carinicaudaalginate oligosaccharidesMetschnikowia bicuspidateimmunity
分类号:
S917.4
DOI:
doi:10.3969/j.issn.1000-4440.2024.04.014
摘要:
为了探究饲料中添加褐藻寡糖(AOS)对脊尾白虾(Exopalaemon carinicauda)免疫和抵抗二尖梅奇酵母(Metschnikowia bicuspidate)能力的影响,试验设置4个不同褐藻寡糖添加量处理,分别为0 mg/kg(CK)、500 mg/kg(T1)、1 000 mg/kg(T2)和2 000 mg/kg(T3),在相同条件下饲养60 d。结果表明:T2处理脊尾白虾的终末质量、总质量增长率和特定生长率极显著高于CK(P<0.01);T3处理脊尾白虾存活率极显著高于CK(P<0.01)。相较于CK,T2处理脊尾白虾肝胰腺中SOD活性、肝胰腺和肌肉中ACP活性、肝胰腺和肌肉中AKP活性、肝胰腺中PO活性均极显著提高(P<0.01)。T1处理LGBP基因在脊尾白虾肝胰腺中相对表达量极显著高于CK(P<0.01),T2处理SOD、LGBP基因在脊尾白虾肝胰腺中相对表达量均极显著高于CK(P<0.01),各处理LZM、SR和CTSB基因在脊尾白虾肝胰腺中相对表达量与CK均无显著差异(P>0.05)。表明饲料中添加1 000 mg/kg褐藻寡糖可以有效提高脊尾白虾体内部分抗氧化和免疫相关基因的表达量,提高脊尾白虾的抗氧化水平和免疫能力。基因相对表达量检测结果与酶活性检测结果一致。攻毒试验中,T1、T2和T3处理脊尾白虾存活率在第3~5 d均极显著高于CK(P<0.01),但各处理脊尾白虾最终存活率和CK相同,表明褐藻寡糖对二尖梅奇酵母MQ2101具有一定的防控作用,但并不能提高感染后的最终存活率。
Abstract:
In order to investigate the effects of alginate oligosaccharides (AOS) on the immunity and resistance of Exopalaemon carinicauda to Metschnikowia bicuspidate, four treatments were set up, the addition levels of AOS were 0 mg/kg (CK), 500 mg/kg (T1), 1 000 mg/kg (T2) and 2 000 mg/kg (T3), respectively. The shrimps were fed under the same conditions for 60 days. The results showed that the terminal weight, total weight growth rate and specific growth rate of Exopalaemon carinicauda of T2 treatment were significantly higher than those of CK (P<0.01), and the survival rate of Exopalaemon carinicauda of T3 treatment was significantly higher than that of CK (P<0.01). Compared with CK, the SOD activity in hepatopancreas, ACP activity in hepatopancreas and muscles, AKP activity in hepatopancreas and muscles, and PO activity in hepatopancreas of Exopalaemon carinicauda of T2 treatment were significantly increased (P<0.01). The relative expression level of LGBP in hepatopancreas of Exopalaemon carinicauda of T1 treatment was significantly higher than that of CK (P<0.01). The relative expression levels of SOD and LGBP in hepatopancreas of Exopalaemon carinicauda of T2 treatment were significantly higher than those of CK (P<0.01). The relative expression levels of LZM, SR and CTSB genes in hepatopancreas of Exopalaemon carinicauda were not significantly different from those of CK (P>0.05). The results showed that the addition of 1 000 mg/kg alginate oligosaccharides in the diet could effectively increase the expression of some anti-oxidation and immune related genes, and enhance the anti-oxidation level and immune ability of Exopalaemon carinicauda. The results of relative gene expression were consistent with the results of enzyme activity detection. In the challenge experiment, the survival rate of Exopalaemon carinicauda in T1, T2 and T3 treatments was significantly higher than that in CK (P<0.01) in 3-5 d. But the final survival rate of Exopalaemon carinicauda in each treatment was the same as that in CK, which indicated that alginate oligosaccharides could prevent and control Metschnikowia bicuspidate MQ2101, but could not improve the final survival rate after infection.

参考文献/References:

[1]马鸿梅,王兴强,曹梅,等. 脊尾白虾养殖研究进展[J]. 现代农业科技,2019,(16):171-175.
[2]沈晔,王兴强,曹梅,等. 脊尾白虾养殖技术研究[J]. 安徽农学通报,2019,25(15):76-80.
[3]赵然,史文军,王李宝,等. 脊尾白虾“僵尸病”的初探[J]. 水产学报,2023,47(9):165-174.
[4]SDERHLL K, CERENIUS L. Crustacean immunity[J]. Annual Review of Fish Diseases,1992,2:3-23.
[5]SDERHLL I. Crustacean hematopoiesis[J]. Developmental & Comparative Immunology,2016,58:129-141.
[6]IWANAGA S, LEE B L. Recent advances in the innate immunity of invertebrate animals[J]. BMB Reports,2005,38(2):128-150.
[7]LITTLE T J, HULTMARK D, READ A F. Invertebrate immunity and the limits of mechanistic immunology[J]. Nature Immunology,2005,6(7):651-654.
[8]SDERHLL K, HERGENHAHN H G, JOHANSSON M W, et al. The regulation of the prophenoloxidase activating system in crustaceans[J]. Developmental & Comparative Immunology,1986,10(4):622-622.
[9]LIU J, YANG S, LI X, et al. Alginate oligosaccharides:production, biological activities, and potential applications[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(6):1859-1881.
[10]KHALIL H P S, LAI T K, TYE Y Y, et al. A review of extractions of seaweed hydrocolloids:properties and applications[J]. Express Polymer Letters,2018,12(4):296-317.
[11]乔明. 褐藻胶裂解酶产生菌的筛选,基因克隆表达及酶法制备的褐藻寡糖对提高植物逆境抗性的作用[D]. 上海:华东理工大学,2013.
[12]孙哲朴,刘辉,武欣雨,等. 褐藻胶寡糖制备和生物活性的研究进展[J]. 食品工业,2019,40(2):284-289.
[13]FALKEBORG M, CHEONG L Z, GIANFICO C, et al. Alginate oligosaccharides:enzymatic preparation and antioxidant property evaluation[J]. Food Chemistry,2014,164:185-194.
[14]李玉芬. 褐藻胶寡糖的酶解制备及其应用研究[D]. 福州:福州大学,2018.
[15]LI F, TANG Y, WEI L, et al. Alginate oligosaccharide modulates immune response, fat metabolism, and the gut bacterial community in grass carp (Ctenopharyngodon idellus)[J]. Fish & Shellfish Immunology,2022,130:103-113.
[16]YANG M, LU Z, LI F, et al. Alginate oligosaccharide improves fat metabolism and antioxidant capacity in the liver of grass carp (Ctenopharyngodon idellus)[J]. Aquaculture,2021,540:736664.
[17]HU J, ZHANG J, WU S. The growth performance and non-specific immunity of juvenile grass carp (Ctenopharyngodon idella) affected by dietary alginate oligosaccharide[J]. 3 Biotech,2021,11(2):46.
[18]霍圃宇. 壳寡糖,褐藻酸寡糖对大菱鲆(Scophthalmus maximus)生长,免疫指标,血液指标影响[D]. 大连:大连海洋大学,2016.
[19]霍圃宇,潘金露,韩雨哲,等. 褐藻酸寡糖对大菱鲆幼鱼生长性能,血液学指标及非特异性免疫影响[J]. 广东海洋大学学报,2015,35(4):10-16.
[20]王鹏,江晓路,江艳华,等. 褐藻低聚糖对提高大菱鲆免疫机能的作用[J]. 海洋科学,2006,30(8):6-9.
[21]江晓路,杜以帅,王鹏,等. 褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响[J]. 中国海洋大学学报(自然科学版),2009,39(6):1188-1192.
[22]ASHOURI G, SOOFIANI N M, HOSEINIFAR S H, et al. Influence of dietary sodium alginate and Pediococcus acidilactici on liver antioxidant status, intestinal lysozyme gene expression, histomorphology, microbiota, and digestive enzymes activity, in Asian sea bass (Lates calcarifer) juveniles[J]. Aquaculture,2020,518:734638.
[23]潘金露,韩雨哲,霍圃宇,等. 饲料中添加褐藻酸寡糖对大菱鲆肠道结构, 消化酶活性及表观消化率的影响[J]. 广东海洋大学学报,2016,36(3):39-44.
[24]王刚. 凡纳滨对虾免疫基因克隆与合并感染条件下的免疫应答[D]. 湛江:广东海洋大学,2015.
[25]IGHODARO O M, AKINLOYE O A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX):their fundamental role in the entire antioxidant defence grid[J]. Alexandria Journal of Medicine,2018,54(4):287-293.
[26]GILGUN-SHERKI Y, ROSENBAUM Z, MELAMED E, et al. Antioxidant therapy in acute central nervous system injury:current state[J]. Pharmacological Reviews,2002,54(2):271-284.
[27]王庚申,谢建军,施慧,等. 不同盐度对脊尾白虾非特异性免疫及抗氧化酶活性的影响[J]. 浙江海洋学院学报(自然科学版),2013,32(6):499-502.
[28]YANG C, KONG J, WANG Q, et al. Heterosis of haemolymph analytes of two geographic populations in Chinese shrimp Fenneropenaeus chinensis[J]. Fish & Shellfish Immunology,2007,23(1):62-70.
[29]张明,王雷,郭振宇,等. 脂多糖和弧菌对中国对虾血清磷酸酶、超氧化物歧化酶和血蓝蛋白的影响[J]. 海洋科学,2004,28 (7):22-25.
[30]李雯,陶妍. 鲤鱼g型溶菌酶基因的 cDNA 克隆及其在毕赤酵母中的表达[J]. 福建农林大学学报(自然科学版),2017,46(1):81-88.
[31]李雪雪,阮灵伟. 超深渊钩虾Eurythenes gryllus i型溶菌酶的基因克隆与表达[J].应用海洋学学报,2020,39(1):42-48.
[32]林亲录,马美湖,金阳海,等. 鸡蛋卵清中溶菌酶的提取与纯化[J]. 食品科学,2002,23(2):43-46.
[33]岳峰,潘鲁青,谢鹏,等. 氨氮胁迫对三疣梭子蟹酚氧化酶原系统和免疫指标的影响[J]. 中国水产科学,2010,17(4):761-770.
[34]CERENIUS L, SDERHLL K. The prophenoloxidase-activating system in invertebrates[J]. Immunological Reviews,2004,198(1):116-126.
[35]CERENIUS L, LEE B L, SDERHLL K. The proPO-system:pros and cons for its role in invertebrate immunity[J]. Trends in Immunology,2008,29(6):263-271.
[36]郭慧,冼健安,毕建柱,等. 虾类免疫因子的研究进展[J]. 饲料工业,2013,34(22):42-46.
[37]WANG X, WANG L, CHE J, et al. In vitro non-specific immunostimulatory effect of alginate oligosaccharides with different molecular weights and compositions on sea cucumber (Apostichopus japonicus) coelomocytes[J]. Aquaculture,2014,434:434-441.
[38]杜以帅. 酶解海藻产物对刺参(Apostichopus japonicus)肠道菌群和免疫相关因子的影响[D]. 青岛:中国海洋大学,2010.
[39]ALEEM M, ALEEM S, SHARIF I, et al. Characterization of SOD and GPX gene families in the soybeans in response to drought and salinity stresses[J]. Antioxidants,2022,11(3):460.
[40]DAS K, ROYCHOUDHURY A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants[J]. Frontiers in Environmental Science,2014,2:53.
[41]KIM M S, MIN E Y, KIM J H, et al. Growth performance and immunological and antioxidant status of Chinese shrimp, Fennerpenaeus chinensis reared in bio-floc culture system using probiotics[J]. Fish & Shellfish Immunology,2015,47(1):141-146.
[42]KONG X, WANG S, JIANG H, et al. Responses of acid/alkaline phosphatase, lysozyme, and catalase activities and lipid peroxidation to mercury exposure during the embryonic development of goldfish Carassius auratus[J]. Aquatic Toxicology,2012,120:119-125.
[43]BOMAN H G, FAYE I, GUDMUNDSSON G H, et al. Cell-free immunity in Cecropia:a model system for antibacterial proteins[J]. EJB Reviews,1991,1992:189-197.
[44]MORI K, NAKANISHI T, SUZUKI T, et al. Defense mechanisms in invertebrates and fish[J]. Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme,1989,34(3):214-223.
[45]ZHANG D, MA J, JIANG J, et al. Molecular characterization and expression analysis of lipopolysaccharide and β-1, 3-glucan-binding protein (LGBP) from pearl oyster Pinctada fucata[J]. Molecular Biology Reports,2010,37:3335-3343.
[46]YU X Q, ZHU Y F, MA C, et al. Pattern recognition proteins in Manduca sexta plasma[J]. Insect Biochemistry and Molecular Biology,2002,32(10):1287-1293.
[47]FAN S, WANG F, XIE Z, et al. Molecular characterization and functional analysis of scavenger receptor class B from black tiger shrimp (Penaeus monodon)[J]. Electronic Journal of Biotechnology,2021,51:40-49.
[48]CANTON J, NECULAI D, GRINSTEIN S. Scavenger receptors in homeostasis and immunity[J]. Nature Reviews Immunology,2013,13(9):621-634.
[49]QIN Z, BABU V S, WAN Q, et al. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) challenged by Vibrio parahaemolyticus reveals unique immune-related genes[J]. Fish & Shellfish Immunology,2018,77:164-174.
[50]AGGARWAL N, SLOANE B F. Cathepsin B:multiple roles in cancer[J]. PROTEOMICS-Clinical Applications,2014,8(5/6):427-437.
[51]WANG Y, ZHANG S, LIU Z, et al. Characterization and expression of AmphiCL encoding cathepsin L proteinase from amphioxus Branchiostoma belcheri tsingtauense[J]. Marine Biotechnology,2005,7:279-286.
[52]YI P, HU X, HU B, et al. Identification and expression of cathepsin B from the freshwater mussel Cristaria plicata[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2018, 225:21-28.
[53]ZELENSKY A N, GREADY J E. The C-type lectin-like domain superfamily[J]. The FEBS Journal,2005,272(24):6179-6217.
[54]ALEX N Z, JILL E G. The C-type lectin-like domain superfamily[J]. FEBS Journal,2005,272(24):6179-6217.
[55]BI J, NING M, XIE X, et al. A typical C-type lectin, perlucin-like protein, is involved in the innate immune defense of whiteleg shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology,2020,103:293-301.
[56]LI M, LI C, MA C, et al. Identification of a C-type lectin with antiviral and antibacterial activity from pacific white shrimp Litopenaeus vannamei[J]. Developmental & Comparative Immunology,2014,46(2):231-240.
[57]WONGPANYA R, SENGPRASERT P, AMPARYUP P, et al. A novel C-type lectin in the black tiger shrimp Penaeus monodon functions as a pattern recognition receptor by binding and causing bacterial agglutination[J]. Fish & Shellfish Immunology,2017,60:103-113.
[58]THAIMUANGPHOL W, SANOAMUANG L, WANGKAHART E. The immune response of fairy shrimp Streptocephalus sirindhornae against bacterial black disease by de novo transcriptome analysis[J]. Fish & Shellfish Immunology,2022,121:108-115.

备注/Memo

备注/Memo:
收稿日期:2023-03-07基金项目:江苏省农业重大新品种创制项目(PZCZ201747);江苏省农业科技自主创新基金项目[CX(22)3083];江苏省种业振兴揭榜挂帅项目[JBGS(2021)122];江苏现代农业产业技术体系资助项目[JATS(2022)419、JATS(2022)164]作者简介:史文军(1987-),男,安徽寿县人,博士,副研究员,主要从事海水虾类品种选育和绿色健康养殖研究。(E-mail)muzhiye080326@126.com通讯作者:万夕和,(E-mail)wxh1708@163.com;秦松,(E-mail)sqin@yic.ac.cn
更新日期/Last Update: 2024-05-22