参考文献/References:
[1]LOU H Q, HU Y, ZHANG L Y, et al. Nondestructive evaluation of the changes of total flavonoid,total phenols,ABTS and DPPH radical scavenging activities,and sugars during mulberry (Morus alba L.) fruits development by chlorophyll fluorescence and RGB intensity values[J]. LWT-Food Science and Technology,2012,47(1):19-24.
[2]李修华,卢显杰,奚金阳,等. 智能手机RGB图像检测植物叶片叶绿素含量的通用方法[J]. 农业工程学报,2021,37(22):145-151.
[3]张沛健,尚秀华,吴志华. 基于图像处理技术的5种红树林叶片形态特征及叶绿素相对含量的估测[J]. 热带作物学报,2020,41(3):496-503.
[4]ZHANG J, WANG R J, XIE C J, et al. Crop pests image recognition based on multi-features fusion[J]. Journal of Computational Information Systems,2014,10(12):5121-5129.
[5]叶春,刘莹,李艳大,等. 基于RGB颜色空间的早稻氮素营养监测研究[J]. 中国农业大学学报,2020,25(8):25-34.
[6]HUMPLK J F, LAZR D, HUSICKOV A, et al. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses-a review[J]. Plant Methods,2015,11:29.
[7]王永芳,王克如,王少芬,等. 利用数码相机和成像光谱仪估测棉花叶片叶绿素和氮素含量[J]. 作物学报,2010,36(11):912-915.
[8]史培华,王远,袁政奇,等. 基于冠层RGB图像的冬小麦氮素营养指标监测[J]. 南京农业大学学报,2020,43(5):829-837.
[9]赵阳. 基于番茄叶片图像的叶绿素含量研究[D]. 银川:宁夏大学,2021.
[10]李丽,程灵. 基于RGB模型建立快速检测番茄叶片叶绿素含量的方法[J]. 分子植物育种,2021,19(20):6906-6909.
[11]费丽君,谭峰. 机器视觉技术在大豆叶片叶绿素含量测算上的应用[J]. 农机化研究,2010,32(3):199-201.
[12]徐光辉,虎晓红,熊淑萍,等. 烤烟叶片叶绿素含量与颜色特征的关系[J]. 河南农业大学报,2007,41(6):600-604.
[13]王娟,危常州,王肖娟,等. 采用灰板校正的计算机视觉预测棉花叶绿素含量[J]. 农业工程学报,2013,29(24):173-180.
[14]娄卫东,林宝刚,周洪奎,等. 基于图像特征的油菜叶绿素含量快速估算[J]. 浙江农业科学,2022,63(3):480-484.
[15]龚刚猛,杨珺,何火娇,等. 水稻叶色RGB 组分与SPAD的关系研究[J]. 中国农学通报,2015,31(24):19-24.
[16]GUPUTA S D, IBARAKI Y, PATTANAYAK A K. Development of a digital image analysis method for real-time estimation chlorophyll content in micro propagated potato plants[J]. Plant Biotechnology Reports,2013,7(1):91-97.
[17]程立真,朱西存,高璐璐,等. 基于RGB 模型的苹果叶片叶绿素含量估测[J]. 园艺学报,2017,44(2):381-390.
[18]王诣,闰志勇. 基于图像处理的青冈栎叶绿素含量检测系统研究明[J]. 中国农业科技导报,2017,19(4):59-64.
[19]张若宇,坎杂,马蓉,等. 基于RGB模型的脱绒棉种颜色特征与发芽状况的关系[J]. 农业工程学报,2010,26(10):172-177.
[20]ZHAO K C, YE Y, MA J, et al. Dynamic variation characteristics of rice nitrogen status after anthesis based on the RGB color index[J]. Agronomy,2021,11(9):1739.
[21]SONG Y F, TENG G F, YUAN Y C, et al. Assessment of wheat chlorophyll content by the multiple linear regression of leaf image features[J]. Information Processing in Agriculture,2021,8(2):232-243.
[22]RICCARDI M, MELE G, PULVENTO C, et al. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components[J]. Photosynthesis Research,2014,120(3):263-272.
[23]TAVAKOLI H, GEBBERS R. Assessing nitrogen and water status of winter wheat using a digital camera[J]. Computers and Electronics in Agriculture,2019,157:558-567.
[24]张佩,陈郑盟,刘春伟,等. 冬小麦产量结构要素预报方法[J]. 农业工程学报,2020,36(8):78-87.
[25]BIAN Z H, YANG Q C, LI T, et al. Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes[J].Physiologia Plantarum,2018,164(2):226-240.