参考文献/References:
[1]张领先,陈运强,李云霞,等. 基于卷积神经网络的冬小麦麦穗检测计数系统[J]. 农业机械学报,2019,50(3):144-150.
[2]LI Q Y, CAI J, BERGER B, et al. Detecting spikes of wheat plants using neural networks with laws texture energy[J]. Plant Methods,2017,13(1):1-13.
[3]HU W J, FAN J, DU Y X, et al. MDFC-ResNet: an agricultural IoT system to accurately recognize crop diseases[J]. IEEE Access,2020,8:115287-115298.
[4]MISRA T, ARORA A, MARWAHA S, et al. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging[J]. Plant Methods,2020,16(1):1-20.
[5]赵三琴,李毅念,丁为民,等. 稻穗结构图像特征与籽粒数相关关系分析[J]. 农业机械学报,2014,45(12):323-328.
[6]王栋,陈佳玮,沈利言,等. 基于图像的水稻穗粒相关性状智能检测算法研究[J]. 植物生理学报,2022,58(5):957-971.
[7]杜世伟,李毅念,姚敏,等. 基于小麦穗部小穗图像分割的籽粒计数方法[J]. 南京农业大学学报,2018,41(4):742-751.
[8]QIU R, HE Y, ZHANG M. Automatic detection and counting of wheat spikelet using semi-automatic labeling and deep learning[J]. Frontiers in Plant Science,2022,13:872555.
[9]FERNANDEZ-GALLEGO J A, KEFAUVER S C, GUTIRREZ N A, et al. Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images[J]. Plant Methods,2018,14(1):1-12.
[10]刘哲,黄文准,王利平. 基于改进K-means聚类算法的大田麦穗自动计数[J]. 农业工程学报,2019,35(3):174-181.
[11]XU X, LI H Y, YIN F, et al. Wheat ear counting using K-means clustering segmentation and convolutional neural network[J]. Plant Methods,2020,16:106.
[12]李毅念,杜世伟,姚敏,等. 基于小麦群体图像的田间麦穗计数及产量预测方法[J]. 农业工程学报,2018,34(21):185-194.
[13]WEI W, YANG T L, RUI L, et al. Detection and enumeration of wheat grains based on a deep learning method under various scenarios and scales[J]. Journal of Integrative Agriculture,2020,19(8):1998-2008.
[14]HU G, QIAN L, LIANG D, et al. Self-adversarial training and attention for multi-task wheat phenotyping[J]. Applied Engineering in Agriculture,2019,35(6):1009-1014.
[15]DANDRIFOSSE S, ENNADIFI E, CARLIER A, et al. Deep learning for wheat ear segmentation and ear density measurement: from heading to maturity[J]. Computers and Electronics in Agriculture,2022,199:107161.
[16]ZHAO J, ZHANG X, YAN J, et al. A wheat spike detection method in UAV images based on improved YOLOv5[J]. Remote Sensing,2021,13(16):3095.
[17]MISRA T, ARORA A, MARWAHA S, et al. Web-SpikeSegNet: deep learning framework for recognition and counting of spikes from visual images of wheat plants[J]. IEEE Access,2021,9:76235-76247.
[18]LI J, LI C, FEI S, et al. Wheat ear recognition based on RetinaNet and transfer learning[J]. Sensors,2021,21(14):4845. DOI:10.3390/s21144845.
[19]段凌凤,熊雄,刘谦,等. 基于深度全卷积神经网络的大田稻穗分割[J]. 农业工程学报,2018,34(12):202-209.
[20]WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(10):3349-3364.
[21]ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]. Honolulu, HI, USA:IEEE,2017:2881-2890.
[22]CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. Berlin:Springer,2018:801-818.
[23]邱云飞,温金燕. 基于DeepLabV3+与注意力机制相结合的图像语义分割[J]. 激光与光电子学进展,2022,59(4):130-139.
[24]马冬梅,李鹏辉,黄欣悦,等. 改进DeepLabV3+的高效语义分割[J]. 计算机工程与科学,2022,44(4):737-745.
[25]RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]. Berlin:Springer International Publishing,2015:234-241.
[26]梁波,卢军,曹阳. 基于改进U-Net卷积神经网络的钢轨表面损伤检测方法[J]. 激光与光电子学进展,2021,58(2):334-340.
[27]MA J C, LI Y X, DU K M, et al. Segmenting ears of winter wheat at flowering stage using digital images and deep learning[J]. Computers and Electronics in Agriculture,2020,168:105159.
[28]ALHARBI N, ZHOU J, WANG W. Automatic counting of wheat spikes from wheat growth images[C]. Funchal, Madeira, Portugal:SciTePress,2018:346-355.
[29]FERNANDEZ-GALLEGO J A, KEFAUVER S C, GUTIRREZ N A, et al. Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images[J]. Plant Methods,2018,14(1):22.
[30]KHAKI S, SAFAEI N, PHAM H, et al. Wheatnet: a lightweight convolutional neural network for high-throughput image-based wheat head detection and counting[J]. Neurocomputing,2022,489:78-89.
[31]WANG Y, QIN Y, CUI J. Occlusion robust wheat ear counting algorithm based on deep learning[J]. Frontiers in Plant Science,2021,12:645899. DOI:10.3389/fpls.2021.645899.
[32]MAJI A K, MARWAHA S, KUMAR S, et al. SlypNet:spikelet-based yield prediction of wheat using advanced plant phenotyping and computer vision techniques[J]. Frontiers in Plant Science,2022,13:889853.
[33]ALKHUDAYDI T, ZHOU J, DE LA LGLESIA B. Counting spikelets from infield wheat crop images using fully convolutional networks[J]. Neural Computing and Applications,2022,34(20):17539-17560.
[34]XU C, JIANG H Y, YUEN P, et al. MHW-PD: a robust rice panicles counting algorithm based on deep learning and multi-scale hybrid window[J]. Computers and Electronics in Agriculture,2020,173:105375.
[35]HASAN M M, CHOPIN J P, LAGA H, et al. Detection and analysis of wheat spikes using convolutional neural networks[J]. Plant Methods,2018,14(1):1-13.
[36]SADEGHI-TEHRAN P, VIRLET N, AMPE E M, et al. DeepCount: in-field automatic quantification of wheat spikes using simple linear iterative clustering and deep convolutional neural networks[J]. Frontiers in Plant Science,2019,10:1176.