参考文献/References:
[1]YAO W J, LI Y X, CHEN Y C, et al. Atg1-mediated Atg11 phosphorylation is required for selective autophagy by regulating its association with receptor proteins[J]. Autophagy,2023,19(1):180-188.
[2]LI H, LIU Z Y, WU N Y, et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications[J]. Molecular Cancer,2020,19(1):107.
[3]KIRKIN V, ROGOV V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway[J]. Molecular Cell,2019,76(2):268-285.
[4]LIU X M, SUN L L, HU W, et al. ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos[J]. Molecular Cell,2015,59(6):1035-1042.
[5]YU H L, JIA W T, LI Z X, et al. The sorting nexin genes ChSNX4 and ChSNX41 are required for reproductive development, stress adaption and virulence in Cochliobolus heterostrophus[J]. Journal of Fungi,2022,8(8):855.
[6]NICE D C, SATO T K, STROMHAUG P E, et al. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy[J]. Biological Chemistry,2002,277(33):30198-30207.
[7]KLIONSKY D J, CREGG J M, DUNN W A J R,et al. A unified nomenclature for yeast autophagy-related genes[J]. Developmental Cell,2003,5(4):539-545.
[8]ZHAO D, LIU X M, YU Z Q, et al Atg20- and Atg24-family proteins promote organelle autophagy in fission yeast[J]. Journal of Cell Science,2016,129(22):4289-4304.
[9]OHASHI Y, MUNRO S. Membrane delivery to the yeast autophagosome from the golgi-endosomal system[J]. Molecular Biology of the Cell,2010,21:3998-4008.
[10]POPELKA H, DAMASIO A, HINSHAW J E, et al. Structure and function of yeast Atg20, a sorting nexin that facilitates autophagy induction[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(47):E10112-E10121.
[11]DENG Y Z, QU Z, NAQVI N I. The role of snx41-based pexophagy in Magnaporthe development[J]. PLoS One,2013,8(11):e79128.
[12]LYU W Y, XU Z, TALBOT N J, et al. The sorting nexin FgAtg20 is involved in the Cvt pathway, non-selective macroautophagy, pexophagy and pathogenesis in Fusarium graminearum[J]. Cellular Microbiology,2020,22(8):e13208.
[13]梁晨,周芸,安邦,等. 胶孢炭疽菌特有效应蛋白基因CgE23对产孢能力的影响[J]. 分子植物育种,2020,18(19):6377-6384.
[14]朱信霖,扈东营,陈显振,等. 作用于细胞壁的抗真菌药物研究进展[J]. 菌物学报,2022,41(6):871-877.
[15]段灵涛,祝一鸣,何九卿,等. 真菌细胞自噬的研究进展[J]. 热带生物学报,2021,12(2):253-260.
[16]翟李刚,林春花,蔡志英,等. 橡胶树胶孢炭疽菌细胞自噬相关基因CgAtg4的克隆与序列分析[J]. 湖北农业科学,2014,53(9):2189-2191,2223.
[17]李超萍,林春花,翟李刚,等. 橡胶树胶孢炭疽病菌致病相关基因CgATG8的功能分析[J]. 热带作物学报,2013,34(11):2172-2178.
[18]WANG Q N, AN B, HOU X R, et al. Dicer-like proteins regulate the growth, conidiation, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis[J]. Front Microbiol,2018,8:2621.
[19]LIU N, WANG Q N, HE C Z, et al. CgMFS1, a major facilitator superfamily transporter, is required for sugar transport, oxidative stress resistance, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis[J]. Current Issues in Molecular Biology,2021,43(3):1548-1557.
[20]GAO X S, WANG Q N, FENG Q D, et al. Heat shock transcription factor CgHSF1 is required for melanin biosynthesis, appressorium formation, and pathogenicity in Colletotrichum gloeosporioides[J]. Journal of Fungi,2022,8(2):175.
[21]廖至雯,黄志睿,罗红丽.胶胞炭疽菌自噬诱导和MDC染色方法的建立和条件优化[J/OL].分子植物育种,2023:1-12
[2023-03-14]. https://kns.cnki.net/kcms/detail/46.1068.S.20230313.1851.010.html.
[22]VENEAULT-FOURREY C, BAROOAH M, EGAN M, et al. Autophagic fungal cell death is necessary for infection by the rice blast fungus[J]. Science,2006,312(5773):580-583.
[23]吕务云. 禾谷镰刀菌细胞自噬途径相关基因的功能分析[D]. 杭州:浙江大学,2019.
[24]SHWAB E K, JUVVADI P R, SHAHEEN S K, et al. Protein kinase a regulates autophagy-associated proteins impacting growth and virulence of Aspergillus fumigatus[J]. Journal of Fungi, 2022, 8(4): 354.
[25]刘伟,杜春梅. 植物病原真菌的自噬[J]. 微生物学报,2021,61(11):3363-3376.
[26]TEASDALE R D, COLLINS B M. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease[J]. Biochem Journal,2012,441(1):39-59.
[27]CHANDRA M, COLLINS B M. The phox homology (PX) domain[J]. Advances in Experimental Medicine and Biology,2019,1111:1-17.
[28]RATHOD J, YEN H C, LIANG B, et al. YPIBP:a repository for phosphoinositide-binding proteins in yeast[J]. Comput Struct Biotechnol Journal,2021,19:3692-3707.
[29]ASPENSTRM P. BAR domain proteins regulate rho GTPase signaling[J]. Advances in Experimental Medicine and Biology,2019,1111:33-53.
[30]ZHENG W H, LIN Y H, FANG W Q, et al. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearum[J]. New Phytologist,2018,219(2):654-671.
[31]LYNCH-DAY M A, KLIONSKY D J. The Cvt pathway as a model for selective autophagy[J]. Febs Letters,2010,584(7):1359-1366.
[32]MA M, KUMAR S, PURUSHOTHAMAN L, et al. Lipid trafficking by yeast Snx4 family SNX-BAR proteins promotes autophagy and vacuole membrane fusion[J]. Molecular Biology of the Cell,2018,29(18):2190-2200.
[33]KABEYA Y, KAMADA Y, BABA M, et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy[J]. Molecular Biology of the Cell,2005,16(5):2544-2553.
[34]YORIMITSU T, KLIONSKY D J. Atg11 links cargo to the vesicle forming machinery in the cytoplasm to vacuole targeting pathway[J]. Molecular Biology of the Cell,2005,16(4):1593-1605.