参考文献/References:
[1]KOLUKISAOGLU U, WEINL S, BLAZEVIE D, et al. Caleium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiology,2004,134:43-58.
[2]KUDLA J, BATISTIC O, HASHIMOTO K. Calcium signals:the lead currency of plant information processing[J]. Plant Cell,2010,22(3):541-563.
[3]ALVRECHTV, RITZ O, LINDER S, et al. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases[J]. EMBO Journal,2001,20:1051-1063.
[4]CHEN X F, GU Z M, LIU F, et al. Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses[J]. Rice Science,2011,18:1-9.
[5]SUN T, WANG Y, WANG M, et al. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.)[J]. BMC Plant Biology,2015,15:269.
[6]SUN W N, ZHANG B, DENG J W, et al. Genome-wide analysis of CBL and CIPK family genes in cotton:conserved structures with divergent interactions and expression[J]. Physiology and Molecular Biology of Plants,2021,27(2):359-368.
[7]QIU Q S, GUO Y, DIETRICH M A, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. Proceedings of the National Academy of Sciences,2002,99(12):8436-8441.
[8]KIM B G, WAADT R, CHEONG Y H, et al. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis[J]. The Plant Journal,2007,52(3):473-484.
[9]LI J, LONG Y, QI G N, et al. The OsAKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J]. Plant Cell,2014,26(8):3387-3402.
[10]MCCORMICK R F, TRUONG S K, SREEDASYAM A, et al. The Sorghum bicolor reference genome:improved assembly,gene annotations,a transcriptome atlas,and signatures of genome organization[J]. The Plant Journal,2017,93(2):338-354.
[11]SANYAL S K, RAO S, MISHRA L K, et al. Plant stress responses mediated by CBL-CIPK phosphorylation network[J]. Enzymes,2016,40:31-64.
[12]ASLAM M, FAKHER B, JAKADA B H, et al. Genome-wide identification and expression profiling of CBL-CIPK gene family in pineapple (Ananas comosus) and the role of AcCBL1 in abiotic and biotic stress response[J]. Biomolecules,2019,9(7):293.
[13]YIN X, WANG Q, CHEN Q, et al. Genome-wide identification and functional analysis of the calcineurin B-like protein and calcineurin B-like protein-interacting protein kinase gene families in turnip (Brassica rapa var. rapa)[J]. Frontiers in Plant Science,2017,8:1191.
[14]LI J, JIANG M M, REN L, et al. Identification and characterization of CBL and CIPK gene families in eggplant (Solanum melongena L.)[J]. Molecular Genetics and Genomics,2016,291(4):1769-1781.
[15]ZHANG X X, REN X L, QI X T, et al. Evolution of the CBL and CIPK gene families in Medicago:genome-wide characterization, pervasive duplication, and expression pattern under salt and drought stress[J]. BMC Plant Biology,2022,22(1):512.
[16]ZHANG X X, LI X X, ZHAO R, et al. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families[J]. New Phytologist,2020,226(5):1506-1516.
[17]DENG J, YANG X, SUN W, et al. The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2[J]. Plant Physiology,2020,183(1):236-249.
[18]SANYAL S K, PANDEY A, PANDEY G K. The CBL-CIPK signaling module in plants:a mechanistic perspective[J]. Physiologia Plantarum,2015,155(2):89-108.
[19]GUO Y, HALFTER U, ISHITANI M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. Plant Cell,2001,13:1383-1400.
[20]LERAN S, EDEL H, PERVENT M, et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid[J]. Science Signaling,2015,8(375). DOI:10.1126/scisignal.aaa4829.
[21]YANG W, KONG Z, OMO-IKERODAH E, et al. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics,2008,35(9):531-543.
[22]CUI X Y, DU Y T, FU J D, et al. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses[J]. BMC Plant Biology,2018,18:93.
[23]JIN X, SUN T, WANG X T, et al. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat[J]. Scientific Reports,2016,6:28884.