[1]徐鹏,李春宏,范昕琦,等.高粱CIPK家族基因的全基因组鉴定及非生物胁迫下的表达特征[J].江苏农业学报,2024,(04):591-598.[doi:doi:10.3969/j.issn.1000-4440.2024.04.002]
 XU Peng,LI Chun-hong,FAN Xin-qi,et al.Whole genome-wide identification of CIPK family and their expression characteristics under abiotic stress in Sorghum bicolor[J].,2024,(04):591-598.[doi:doi:10.3969/j.issn.1000-4440.2024.04.002]
点击复制

高粱CIPK家族基因的全基因组鉴定及非生物胁迫下的表达特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年04期
页码:
591-598
栏目:
遗传育种·生理生化
出版日期:
2024-04-30

文章信息/Info

Title:
Whole genome-wide identification of CIPK family and their expression characteristics under abiotic stress in Sorghum bicolor
作者:
徐鹏1李春宏1范昕琦23梁笃23沈新莲1
(1.江苏省农业科学院经济作物研究所/农业农村部长江下游棉花与油菜重点实验室,江苏南京210014;2.山西农业大学农学院,山西晋中030801;3.山西省农业科学院高粱研究所/高粱遗传与种质创新山西省重点实验室,山西晋中030600)
Author(s):
XU Peng1LI Chun-hong1FAN Xin-qi23LIANG Du23SHEN Xin-lian1
(1.Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;2.College of Agriculture, Shanxi Agricultural University, Jinzhong 030801;3.Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute of Shanxi Academy of Agricultural Sciences, Jinzhong 030600)
关键词:
高粱CIPK基因全基因组鉴定非生物胁迫
Keywords:
Sorghum bicolorCIPK genewhole genome-wide identificationabiotic stress
分类号:
S514
DOI:
doi:10.3969/j.issn.1000-4440.2024.04.002
摘要:
钙调磷酸酶B样蛋白互作蛋白激酶(CIPK)是一种重要的Ca2+信号传感器,在植物应答逆境非生物胁迫过程中发挥着重要作用。为了探究高粱中CIPK家族基因的功能,本研究从高粱基因组中鉴定了31个SbCIPK基因,这些基因不均匀地分布在高粱的9条染色体上,编码蛋白质的氨基酸数量为403~519个,等电点为6.07~9.38,相对分子质量为46 357.31~58 316.97。基因结构分析结果表明,SbCIPK家族基因分为内含子缺失型和内含子富集型2类。进化树分析结果表明,SbCIPK家族蛋白质成员分为8个亚族。基于转录组数据的表达模式分析结果表明,SbCIPK基因广泛参与对盐胁迫、干旱胁迫等非生物胁迫的响应。本研究结果可以为高粱CIPK家族基因的功能研究奠定基础。
Abstract:
Calcineurin B-like proteins interacting protein kinase (CIPK) is an important Ca2+ signal sensor, which plays an important role in plants’ response to abiotic stress. In order to explore the function of CIPK family gene members in Sorghum bicolor’ a total of 31 SbCIPK genes were identified, which were unevenly distributed on nine chromosomes from Sorghum bicolor in this study. The length of the SbCIPKs encoded proteins ranged from 403 to 519 aa, the isoelectric points ranged from 6.07 to 9.38, and the relative molecular weights ranged from 46 357.31 to 58 316.97. The SbCIPK gene family members were divided into intron deletion type and intron enrichment type by gene structure analysis. According to the results of phylogenetic tree analysis, the S. bicolor SbCIPK family protein members were divided into eight subgroups. SbCIPK genes were widely involved in abiotic stress responses to salt and drought and so on based on the published transcriptome data. These results can lay the foundation for the functional study of SbCIPK family members in S. bicolor.

参考文献/References:

[1]KOLUKISAOGLU U, WEINL S, BLAZEVIE D, et al. Caleium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiology,2004,134:43-58.
[2]KUDLA J, BATISTIC O, HASHIMOTO K. Calcium signals:the lead currency of plant information processing[J]. Plant Cell,2010,22(3):541-563.
[3]ALVRECHTV, RITZ O, LINDER S, et al. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases[J]. EMBO Journal,2001,20:1051-1063.
[4]CHEN X F, GU Z M, LIU F, et al. Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses[J]. Rice Science,2011,18:1-9.
[5]SUN T, WANG Y, WANG M, et al. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.)[J]. BMC Plant Biology,2015,15:269.
[6]SUN W N, ZHANG B, DENG J W, et al. Genome-wide analysis of CBL and CIPK family genes in cotton:conserved structures with divergent interactions and expression[J]. Physiology and Molecular Biology of Plants,2021,27(2):359-368.
[7]QIU Q S, GUO Y, DIETRICH M A, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. Proceedings of the National Academy of Sciences,2002,99(12):8436-8441.
[8]KIM B G, WAADT R, CHEONG Y H, et al. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis[J]. The Plant Journal,2007,52(3):473-484.
[9]LI J, LONG Y, QI G N, et al. The OsAKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J]. Plant Cell,2014,26(8):3387-3402.
[10]MCCORMICK R F, TRUONG S K, SREEDASYAM A, et al. The Sorghum bicolor reference genome:improved assembly,gene annotations,a transcriptome atlas,and signatures of genome organization[J]. The Plant Journal,2017,93(2):338-354.
[11]SANYAL S K, RAO S, MISHRA L K, et al. Plant stress responses mediated by CBL-CIPK phosphorylation network[J]. Enzymes,2016,40:31-64.
[12]ASLAM M, FAKHER B, JAKADA B H, et al. Genome-wide identification and expression profiling of CBL-CIPK gene family in pineapple (Ananas comosus) and the role of AcCBL1 in abiotic and biotic stress response[J]. Biomolecules,2019,9(7):293.
[13]YIN X, WANG Q, CHEN Q, et al. Genome-wide identification and functional analysis of the calcineurin B-like protein and calcineurin B-like protein-interacting protein kinase gene families in turnip (Brassica rapa var. rapa)[J]. Frontiers in Plant Science,2017,8:1191.
[14]LI J, JIANG M M, REN L, et al. Identification and characterization of CBL and CIPK gene families in eggplant (Solanum melongena L.)[J]. Molecular Genetics and Genomics,2016,291(4):1769-1781.
[15]ZHANG X X, REN X L, QI X T, et al. Evolution of the CBL and CIPK gene families in Medicago:genome-wide characterization, pervasive duplication, and expression pattern under salt and drought stress[J]. BMC Plant Biology,2022,22(1):512.
[16]ZHANG X X, LI X X, ZHAO R, et al. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families[J]. New Phytologist,2020,226(5):1506-1516.
[17]DENG J, YANG X, SUN W, et al. The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2[J]. Plant Physiology,2020,183(1):236-249.
[18]SANYAL S K, PANDEY A, PANDEY G K. The CBL-CIPK signaling module in plants:a mechanistic perspective[J]. Physiologia Plantarum,2015,155(2):89-108.
[19]GUO Y, HALFTER U, ISHITANI M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. Plant Cell,2001,13:1383-1400.
[20]LERAN S, EDEL H, PERVENT M, et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid[J]. Science Signaling,2015,8(375). DOI:10.1126/scisignal.aaa4829.
[21]YANG W, KONG Z, OMO-IKERODAH E, et al. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics,2008,35(9):531-543.
[22]CUI X Y, DU Y T, FU J D, et al. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses[J]. BMC Plant Biology,2018,18:93.
[23]JIN X, SUN T, WANG X T, et al. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat[J]. Scientific Reports,2016,6:28884.

相似文献/References:

[1]郝爱平.高粱查尔酮合成酶的生物信息学分析[J].江苏农业学报,2016,(06):1232.[doi:doi:10.3969/j.issn.1000-4440.2016.06.006]
 HAO Ai-ping.Bioinformatics analysis of chalcone synthase in Sorghum bicolor[J].,2016,(04):1232.[doi:doi:10.3969/j.issn.1000-4440.2016.06.006]
[2]冯渊圆,胡海波,祝文斌,等.苏北沿海林农复合经营系统环境特征及农作物光合特性[J].江苏农业学报,2019,(01):96.[doi:doi:10.3969/j.issn.1000-4440.2019.01.014]
 FENG Yuan-yuan,HU Hai-bo,ZHU Wen-bin,et al.Study on environmental characteristics and photosynthesis characteristics of crops for agroforestry management systems in northern Jiangsu province[J].,2019,(04):96.[doi:doi:10.3969/j.issn.1000-4440.2019.01.014]

备注/Memo

备注/Memo:
收稿日期:2023-02-21基金项目:亚夫科技服务项目[KF(21)3001];山西省基础研究计划项目(202103021223130);山西种业创新良种联合攻关项目(2022N2GL-06);山西省农业科学院杂粮分子育种平台专项(YGC2019FZ5);山西省科技合作交流专项(202204041101032)作者简介:徐鹏(1981-),男,江苏扬中人,博士,副研究员,主要从事作物分子育种研究。(E-mail)xupengjaas@126.com通讯作者:沈新莲,(E-mail)xlshen68@126.com
更新日期/Last Update: 2024-05-22