[1]邵欣瑜,熊星,杨峰,等.月月竹竹秆变色后全长转录组分析[J].江苏农业学报,2024,(03):538-551.[doi:doi:10.3969/j.issn.1000-4440.2024.03.017]
 SHAO Xin-yu,XIONG Xing,YANG Feng,et al.Full-length transcriptome sequencing analysis of Chimonobambusa sichuanensis after discoloration of bamboo culm[J].,2024,(03):538-551.[doi:doi:10.3969/j.issn.1000-4440.2024.03.017]
点击复制

月月竹竹秆变色后全长转录组分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年03期
页码:
538-551
栏目:
园艺
出版日期:
2024-03-30

文章信息/Info

Title:
Full-length transcriptome sequencing analysis of Chimonobambusa sichuanensis after discoloration of bamboo culm
作者:
邵欣瑜1熊星1杨峰2赵云飞3刘昌来1刘国华1
(1.南京林业大学竹类研究所/南方现代林业协同创新中心,江苏南京210037;2.菏泽化工高级技工学校,山东菏泽274500;3.临沂市公安局,山东临沂276000)
Author(s):
SHAO Xin-yu1XIONG Xing1YANG Feng2ZHAO Yun-fei3LIU Chang-lai1LIU Guo-hua1
(1.Bamboo Research Institute, Nanjing Forestry University/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China;2.Heze College of Chemical Technology, Heze 274500, China;3.Linyi Municipal Public Security Bureau, Linyi 276000, China)
关键词:
月月竹变色竹秆全长转录组测序光信号
Keywords:
Chimonobambusa sichuanensiscolor-changing bamboo culmfull-length transcriptome sequencinglight signal
分类号:
S795.6
DOI:
doi:10.3969/j.issn.1000-4440.2024.03.017
摘要:
为探究月月竹竹秆受到光照由绿色变为紫色的分子机制,本研究采集月月竹同一竹节紫色部分(Z)、渐变部分(M)和绿色部分(L)的竹青,提取RNA,利用PacBio Sequel三代全长转录组测序技术,结合生物信息学方法对不同颜色的竹青进行全长转录组分析。结果表明,经过三代测序和数据质量控制,共获得非冗余转录本66 961条,长度为500~3 000 bp,平均长度1 389.22 bp,序列总长度为93.02 Mbp,N50为1 830 bp,G+C碱基含量为49.56%。利用NR、Swiss-Prot、COG、GO、KEGG和Pfam数据库对所有转录本进行功能注释,共有56 938条转录本被成功注释,占全部转录本的85.03%;49 115条转录本被GO注释,其中催化活性、细胞器、代谢过程分别是GO数据库分子功能、细胞组分和生物过程中含转录本最多的项目;28 231个转录本被KEGG数据库注释,其中与碳水化合物代谢和基因翻译相关的转录本最多。结合GO注释和KEGG注释,66 961条转录本中有381条转录本与光信号的感受、传递以及光调控相关,包括红光和远红光的受体蛋白PHYA、PHYB及信号通路蛋白PIF3、ELF3,蓝光的受体蛋白CRY、ZTL及信号通路蛋白COP1、SPA1、ELF3、GI、HY5等。类黄酮(包括花青素)代谢、叶绿素合成、类胡萝卜素合成等与植物色素合成相关通路分别含有转录本187条、44条和72条。全长转录本共获得2 079个转录因子,其中包括18个由35个转录本编码的与花青素合成相关的R2R3MYB转录因子。CNCI、CPC、Pfam、PLEK等数据库同时注释到的长链非编码RNA(LncRNA)6 359个,数量高于孝顺竹等其他竹种。本研究获得了高质量的月月竹竹青全长转录组数据,与竹秆变色相关的红光和蓝光受体及光信号传递蛋白,与花青素、叶绿素和类胡萝卜素合成相关的转录因子及长链非编码RNA(LncRNA),为进一步深入分析月月竹竹秆变色机制提供基础。
Abstract:
In order to explore the molecular mechanism of bamboo culm changing from green to purple under light, we collected the purple part (Z), median part (M) and green part (L) of the same bamboo node, extracted RNA, and used PacBio Sequel three-generation full-length transcriptome sequencing technology combined with bioinformatics methods to analyze the full-length transcriptome of bamboo barks with different colors. The results showed that a total of 66 961 non-redundant transcripts were obtained after three generations of sequencing and data quality control. The length ranged from 500 bp to 3 000 bp, with an average length of 1 389.22 bp. The total length of the sequence was 93.02 Mbp, the N50 was 1 830 bp, and the G+C base content was 49.56%. A total of 56 938 transcripts were successfully annotated based on NR, Swiss-Prot, COG, GO, KEGG, and Pfam databases, accounting for 85.03% of all transcripts. A total of 49 115 transcripts were annotated by GO database, among which catalytic activity, organelle and metabolic process were the items with the most transcripts in molecular function, cellular component and biological process of GO database, respectively. The 28 231 transcripts were annotated by KEGG database, of which the transcripts related to carbohydrate metabolism and gene translation were the most. Combined with GO annotation and KEGG annotation, 381 transcripts of 66 961 transcripts were related to the perception, transmission and light regulation of light signals, including red and far-red light receptor proteins PHYA, PHYB and signal pathway proteins PIF3, ELF3, blue light receptor proteins CRY, ZTL and signal pathway proteins COP1, SPA1, ELF3, GI, HY5, etc. The pathways related to plant pigment synthesis, such as flavonoid (including anthocyanin) metabolism, chlorophyll synthesis and carotenoid synthesis, contained 187 transcripts, 44 transcripts and 72 transcripts, respectively. A total of 2 079 transcription factors were obtained from the full-length transcripts, including 18 R2R3MYB transcription factors related to anthocyanin synthesis encoded by 35 transcripts. The number of long non-coding RNAs (LncRNAs) simultaneously annotated in the CNCI, CPC, Pfam, and PLEK databases was 6 359, which was higher than that of other bamboo species such as Xiaoshun bamboo. In this study, we obtained high-quality full-length transcriptome data, red and blue light receptors and light signal transduction proteins related to bamboo discoloration, and transcription factors and LncRNAs related to anthocyanin, chlorophyll and carotenoid synthesis, which provided a basis for further analysis of the mechanism of bamboo discoloration.

参考文献/References:

[1]杜喜春,赵银萍,何祥博,等. 竹类植物开花生理研究现状[J]. 竹子学报,2018,37(3):7-11.
[2]杨秀田,董文渊,邓天吉,等. 竹类植物在赤水市乡村景观建设中的应用[J]. 竹子学报,2021,40(4):37-43.
[3]赵芸. 地被类观赏竹的景观优势及应用[J]. 世界竹藤通讯,2020,18(6):48-50,54.
[4]史军义,易同培,马丽莎,等. 中国观赏竹[M]. 北京:科学出版社, 2012.
[5]刘昌来,熊星,李天帅,等.基于转录组分析色膜覆盖下月月竹竹青变色机制[J/OL]. 植物生理学报. https://link.cnki.net/urlid/31.2055.Q.20231222.1158.003.
[6]贾梦晗,杨洋,张一含,等. 不同蓝光强度连续供光对生菜形态建成、光合特性及营养离子吸收的影响[J/OL]. 中国生态农业学报. http://link.cnki.net/urlid/13.1432.S.20240301.1458.002.
[7]DOU H, NIU G. Plant responses to light[M]. London:Academic Press,2020:153-166.
[8]THOMAS B, MURRAY B G, MURPHY D J. Encyclopedia of applied plant sciences[M]. New York:Academic Press,2016.
[9]杨立文,付建新,亓帅, 等. 高等植物开花时间的蓝光调控: 隐花色素介导的光信号传导[J]. 分子植物育种,2015,13(2):450-460.
[10]SUETSUGU N, WADA M. Signalling mechanism of phototropin-mediated chloroplast movement in Arabidopsis[J]. Journal of Plant Biochemistry and Biotechnology,2020,29(4):580-589.
[11]MATTHEWS J S, VIALET-CHABRAND S, LAWSON T. Role of blue and red light in stomatal dynamic behaviour[J]. Journal of Experimental Botany,2020,71(7):2253-2269.
[12]LANDI M, ZIVCAK M, SYTAR O, et al. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments:a review[J]. Biochimica et Biophysica Acta-Bioenergetics,2020,1861(2):148131.
[13]MUZZOPAPPA F, KIRILOVSKY D. Changing color for photoprotection: the orange carotenoid protein[J]. Trends in Plant Science,2020,25(1):92-104.
[14]MOUSTAKA J, TANOU G, GIANNAKOULA A, et al. Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress[J]. Environmental and Experimental Botany,2020,175:104065.
[15]LU Y, GAN Q, IWAI M, et al. Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection[J]. Nature Communications,2021,12(1):679.
[16]NAIK J, MISRA P, TRIVEDI P K, et al. Molecular components associated with the regulation of flavonoid biosynthesis[J]. Plant Science,2022,317:111196.
[17]魏强,丁雨龙. 矢竹地下茎转录组测序及节间生长相关基因表达分析[J]. 南京林业大学学报 (自然科学版),2017,60(5):42-48.
[18]MA D, DONG S, ZHANG S, et al. Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis)[J]. Molecular Ecology Resources,2021,21(3):955-968.
[19]WEI Q, JIAO C, GUO L, et al. Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots[J]. New Phytologist, 2017, 214(1): 81-96.
[20]WEI Q, GUO L, JIAO C, et al. Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage[J]. Tree Physiology,2019,39(7):1201-1214.
[21]WEI Q, JIAO C, DING Y, et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo[J]. Tree Physiology,2017,38(4):1-14.
[22]鞠烨,江建平,尹增芳,等. 孝顺竹笋箨全长转录组测序分析[J]. 南京林业大学学报(自然科学版),2020,44(6):175-183.
[23]GROTEWOLD, SAINZ, TAGLIANI, et al. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(25):13579-13584.
[24]孙铭阳,徐世强,顾艳,等. 穿心莲全长转录组测序及特性分析[J]. 中国农学通报,2021,37(27):82-89.
[25]WEI H T, HOU D, ASHRAF M F, et al. Metabolic profiling and transcriptome analysis reveal the key role of flavonoids in internode coloration of Phyllostachys violascens cv. Viridisulcata[J]. Frontiers in Plant Science,2022,12:788895.
[26]QI J, WU B, FENG S, et al. Mechanical regulation of organ asymmetry in leaves[J]. Nature Plants,2017,3(9):724-733.
[27]KONDO S, TOMIYAMA H, RODYOUNG A, et al. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night[J]. Journal of Plant Physiology,2014,171(10):823-829.
[28]宋哲,李天忠,徐贵轩,等. 光质对‘红富士’苹果果实着色的影响[J]. 生态学报,2009,29(5):130-137.
[29]BAG P. Light harvesting in fluctuating environments: evolution and function of antenna proteins across photosynthetic lineage[J]. Plants,2021,10(6):1184.
[30]SAITOH A, TAKASE T, ABE H, et al. ZEITLUPE enhances expression of PIF4 and YUC8 in the upper aerial parts of Arabidopsis seedlings to positively regulate hypocotyl elongation[J]. Plant Cell Reports,2021,40:479-489.
[31]XIAO Y, CHU L, ZHANG Y, et al. HY5:a pivotal regulator of light-dependent development in higher plants[J]. Frontiers in Plant Science,2022,12:800989.
[32]隋心意,赵小刚,陈鹏宇,等. 生菜Ls PHYB可变剪接体的克隆与高温诱导表达模式[J]. 中国农业科学,2022,55(9):1822-1830.
[33]刘皓,安晓芹,史宗源,等. 不同改良措施对连作色素万寿菊生长发育及根际土壤环境的影响[J]. 江苏农业科学,2023,51(6):136-143.
[34]乔子纯,贺琰,代红军,等. 外源油菜素内酯对美乐葡萄光合特性和果实品质的影响[J]. 南方农业学报,2022,53(8):2251-2260.
[35]朱璐,闻婧,马秋月,等. 鸡爪槭金陵丹枫和金陵黄枫叶片呈色分析[J]. 江苏农业学报,2022,38(2):521-527.
[36]申敏,柴友荣. 基于RNA干扰抑制油菜种皮色素合成[J]. 江苏农业科学,2023,51(1):44-49.
[37]刘红,魏晓羽,马辉,等. 几种兰属地生种花瓣花色素组成分析[J]. 江苏农业学报,2022,38(6):1657-1677.
[38]赵杰堂. 激素调控植物花青素合成分子机制的研究进展[J].分子植物育种,2016,14(7):1884-1891.
[39]DHAKAREY R, YARITZ U, TIAN L, et al. A Myb transcription factor, Pg Myb308-like, enhances the level of shikimate, aromatic amino acids, and lignins, but represses the synthesis of flavonoids and hydrolyzable tannins, in pomegranate (Punica granatum L.)[J]. Horticulture Research,2022,9:uhac008.
[40]JUN J H, LIU C, XIAO X, et al. The transcriptional repressor MYB2 regulates both spatial and temporal patterns of proanthocyandin and anthocyanin pigmentation in Medicago truncatula[J]. The Plant Cell,2015,27(10):2860-2879.
[41]NAIK J, MISRA P, TRIVEDI P K, et al. Molecular components associated with the regulation of flavonoid biosynthesis[J]. Plant Science,2022,317:111196.
[42]PATRA G K, GUPTA D, ROUT G R, et al. Role of long non coding RNA in plants under abiotic and biotic stresses[J]. Plant Physiology and Biochemistry,2023,194:96-110.
[43]WIERZBICKI A T, BLEVINS T, SWIEZEWSKI S. Long noncoding RNAs in plants[J]. Annual Review of Plant Biology,2021,72:245-271.
[44]SUN Z, HUANG K, HAN Z, et al. Genome-wide identification of Arabidopsis long noncoding RNAs in response to the blue light[J]. Scientific Reports,2020,10(1):6229.
[45]YANG T, MA H, ZHANG J, et al. Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit[J]. The Plant Journal,2019,100(3):572-590.
[46]WANG T, WANG H, CAI D, et al. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis)[J]. The Plant Journal,2017,91(4):684-699.

备注/Memo

备注/Memo:
收稿日期:2023-11-27基金项目:国家重点研发计划项目(2023YFD2201901)作者简介:邵欣瑜(1999-),男,江苏南通人,硕士研究生,主要从事竹林培育研究。(E-mail)593376785@qq.com通讯作者:刘昌来,(E-mail)lcl2012@njfu.edu.cn;刘国华,(E-mail)ghliu@njfu.edu.cn
更新日期/Last Update: 2024-05-20