[1]杨利,张浩明,乔绪稳,等.基于双特异纳米抗体FMDV血凝检测方法的建立[J].江苏农业学报,2024,(03):514-521.[doi:doi:10.3969/j.issn.1000-4440.2024.03.014]
 YANG Li,ZHANG Hao-ming,QIAO Xu-wen,et al.Establishment of haemagglutination detection method for quantification of foot and mouth disease virus based on bispecific nanobodies[J].,2024,(03):514-521.[doi:doi:10.3969/j.issn.1000-4440.2024.03.014]
点击复制

基于双特异纳米抗体FMDV血凝检测方法的建立()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年03期
页码:
514-521
栏目:
畜牧兽医·水产养殖·益虫饲养
出版日期:
2024-03-30

文章信息/Info

Title:
Establishment of haemagglutination detection method for quantification of foot and mouth disease virus based on bispecific nanobodies
作者:
杨利12张浩明12乔绪稳12陈瑾12郑其升12程海卫12
(1.江苏省农业科学院动物免疫工程研究所/国家兽用生物制品工程技术研究中心/江苏省食品质量与安全重点实验室,江苏南京210014;2.兽用生物制品<泰州>国泰技术创新中心,江苏泰州225300)
Author(s):
YANG Li12ZHANG Hao-ming12QIAO Xu-wen12CHEN Jin12ZHENG Qi-sheng12CHENG Hai-wei12
(1.Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences/National Research Center of Engineering and Technology for Veterinary Biologicals/Jiangsu Key Laboratory for Food Quality and Safety, Nanjing 210014, China;2.GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China)
关键词:
口蹄疫病毒双特异性纳米抗体血凝检测法
Keywords:
foot and mouth disease virusbispecific nanobodieshaemagglutination detection method
分类号:
S852.65
DOI:
doi:10.3969/j.issn.1000-4440.2024.03.014
摘要:
本研究利用基因工程方法将抗口蹄疫病毒(FMDV)纳米抗体Nb205和抗鸡醛化红细胞(cRBC)纳米抗体NbRBC48的基因片段连接,构建双特异纳米抗体Nb205-48,其相对分子质量为3.5×104,能同时与FMDV和cRBC反应。利用Nb205-48成功建立了可用于FMDV抗原检测的血凝方法,该方法检测灵敏度为1 μg/ml,与其他病毒无交叉反应,且批内和批间重复性好。分别采用血凝法和夹心ELISA方法对3批次FMDV抗原进行了检测,二者检测结果基本吻合。本研究建立了基于双特异纳米抗体Nb205-48的血凝检测方法,该方法具有较好的灵敏度、特异性和重复性,且简便、快捷、成本低,其检测结果与传统的FMDV定量检测方法的检测结果相关性好,为检测口蹄疫疫苗生产过程中FMDV抗原的含量提供了新方法。
Abstract:
In this study, the gene fragments of the nanobody Nb205 against foot-and-mouth disease virus (FMDV) and the nanobody NbRBC48 against chicken aldehyde red blood cell (cRBC) were connected by genetic engineering method to construct the bispecific nanobody Nb205-48. Its relative molecular weight was 3.5×104, and it could react with FMDV and cRBC simultaneously. A new hemagglutination method for the detection of FMDV antigen was established successfully by using Nb205-48. The detection sensitivity of this method was 1 μg/ml, and it had no cross-reaction with other viruses. In addition, the intra-batch and inter-batch repeatability was good. Three batches of FMDV antigen were detected by hemagglutination method and sandwich ELISA method, and the results were similar. In this study, a novel hemagglutination method based on bispecific nanobody Nb205-48 was established. The method had good sensitivity, specificity and repeatability, and was simple, fast and low cost. The detection results were well correlated with the results of traditional FMDV quantitative detection methods. The method constructed in this study provides a new method for detecting the content of FMDV antigen in the production of foot-and-mouth disease vaccine.

参考文献/References:

[1]DIAZ-SAN-SEGUNDO F, MEDINA G N, STENFELDT C, et al. Foot-and-mouth disease vaccines[J]. Veterinary Microbiology,2017,206:102-112.
[2]李乐,苗海生,信爱国,等. ELISA用于口蹄疫病毒146S抗原快速定量的研究[J]. 中国预防兽医学报,2008,30(4):314-317.
[3]FENG X, MA J W, SUN S Q, et al. Quantitative detection of the foot-and-mouth disease virus serotype o 146s antigen for vaccine production using a double-antibody sandwich ELISA and nonlinear standard curves[J]. PLoS One,2016,11(3):e0149569.
[4]刘玉梅,刘飞,孙艳琪,等. 蔗糖密度梯度法定量口蹄疫完整病毒粒子(146S)的特异性研究[J]. 中国兽药杂志,2012,46(11):6-8.
[5]宋艳民,杨延丽,苏志国,等. 高效体积排阻色谱法定量检测口蹄疫疫苗中146S的疫苗预处理方法[J]. 生物工程学报,2019,35(8):1441-1452.
[6]WAMBURA P N, MZULA A. A novel rapid direct haemagglutination-inhibition assay for measurements of humoral immune response against non-haemagglutinating Fowlpox virus strains in vaccinated chickens[J]. Heliyon,2017,3(10):e00428.
[7]KIRBY F D, MARTIN H T, OSTLER D C. An indirect haemagglutination test for the detection and assay of antibody to infectious bovine rhinotracheitis virus[J]. Veterinary Record,1974,94(16):361-362.
[8]HITZLER W E, RUNKEL S, et al. Prevalence of human parvovirus B19 in blood donors as determined by a haemagglutination assay and verified by the polymerase chain reaction[J]. Vox Sanguinis,2002,82(1):18-23.
[9]HABIB I, SMOLAREK D, HATTAB C, et al. V(H)H (nanobody) directed against human glycophorin A:a tool for autologous red cell agglutination assays[J]. Analytical Biochemistry,2013,438(1):82-89.
[10]CHEN Y P, QIAO Y Y, ZHAO X H, et al. Rapid detection of hepatitis b virus surface antigen by an agglutination assay mediated by a bispecific diabody against both human erythrocytes and hepatitis B virus surface antigen[J]. Clinical & Vaccine Immunology,2007,14(6):720-725.
[11]CHENG H, YANG L, CAI Z, et al. Development of haemagglutination assay for titration of porcine circovirus type 2[J]. Analytical Biochemistry,2020,598:113706.
[12]CHENG H, CHEN J, CAI Z, et al. Development of GEM-PA-nanotrap for purification of foot-and-mouth disease virus[J]. Vaccine,2019,37(24):3205-3213.
[13]KIM A-Y, PARK S Y, PARK S H, et al. Validation of pretreatment methods for the in-process quantification of foot-and-mouth disease vaccine antigens[J]. Vaccines,2021,9(11):1361.
[14]SONG Y, YANG Y, LIN X, et al. On-line separation and quantification of virus antigens of different serotypes in multivalent vaccines by capillary zone electrophoresis:a case study for quality control of foot-and-mouth disease virus vaccines[J]. Journal of Chromatography A,2021,1637:461834.
[15]KIM M H,YUN S J,KIM Y H,et al. Evaluation of quality control methods for foot-and-mouth disease vaccines by high-performance liquid chromatography[J]. Pathogens,2020,9(3):194.
[16]KIM A Y, PARK S Y, PARK S H, et al. Comparison of high-performance liquid chromatography with sucrose density gradient ultracentrifugation for the quantification of foot-and-mouth disease vaccine antigens[J]. Vaccines(Basel),2022,10(5):667.
[17]HARMSEN M M, FIJTEN H P, WESTRA D F, et al. Effect of thiomersal on dissociation of intact (146S) foot-and-mouth disease virions into 12S particles as assessed by novel ELISAs specific for either 146S or 12S particles[J]. Vaccine,2011,29(15):2682-2690.
[18]卢清侠,李伟,金前跃,等. 鹅星状病毒刺突蛋白单克隆抗体的制备与鉴定[J]. 江苏农业科学,2022,50(22):159-165.
[19]刘建欣,刘蕾,郭珊珊,等. 副溶血性弧菌外膜蛋白BamA重组表达及其免疫原性分析[J]. 江苏农业科学,2022,50(15):43-50.
[20]卢春霞,刘长彬,万鹏程,等. 绵羊ovPAG7间接竞争酶联适配体检测方法的建立与应用[J]. 江苏农业学报,2022,38(3):730-738.
[21]GOPINATH S C B, KUMAR P K R. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination[J]. Acta Biomaterialia,2013,9(11):8932-8941.
[22]KILLIAN M L. Hemagglutination assay for influenza virus[J]. Methods in Molecular Biology,2020,2123:3-10.
[23]KRISHNAMURTHY A, JIMENO A. Bispecific antibodies for cancer therapy:a review[J]. Clinical Pharmacology & Therapeutics,2018,185:122-134.
[24]LIU M, LI L, JIN D, et al. Nanobody-A versatile tool for cancer diagnosis and therapeutics[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology,2021,13(4):e1697.

相似文献/References:

[1]胡波,盛蓉,宋艳华,等.RHDV VLPs对口蹄疫病毒B细胞表位的展示效果[J].江苏农业学报,2015,(06):1362.[doi:doi:10.3969/j.issn.1000-4440.2015.06.026]
 HU Bo,SHENG Rong,SONG Yan-hua,et al.Presentation of B-cell epitope of foot-and-mouth disease virus in rabbit hemorrhagic disease virus-like particles[J].,2015,(03):1362.[doi:doi:10.3969/j.issn.1000-4440.2015.06.026]

备注/Memo

备注/Memo:
收稿日期:2023-05-05基金项目:“十四五”重点研发专项(2022YFD1800800);国家自然科学基金项目(32102690);江苏省农业自主创新基金项目[CX(21)3135]作者简介:杨利(1985-),女,重庆人,硕士,助理研究员,主要从事食品安全、动物疫病检测及诊断研究。(E-mail)yangli411041@126.com通讯作者:程海卫,(E-mail)chw5673@126.com
更新日期/Last Update: 2024-05-20