参考文献/References:
[1]ZHOU Y, SRINIVASAN S, MIRNEZAMI S V, et al. Semiautomated feature extraction from RGB images for sorghum panicle architecture GWAS[J]. Plant Physiology,2019,179(1):24-37.
[2]PIERUSCHKA R, SCHURR U. Plant phenotyping:past,present,and future[J]. Plant Phenomics,2019,2019(3):1-6.
[3]SCHARR H, MINERVINI M, FRENCH A P, et al. Leaf segmentation in plant phenotyping:a collation study[J]. Machine Vision and Applications,2016,27(4):585-606.
[4]GUO R, QU L, NIU D, et al. LeafMask:towards greater accuracy on leaf segmentation[C]. Montreal,BC,Canada:IEEE,2021.
[5]GRAND-BROCHIER M, VACAVANT A, CERUTTI G, et al. Tree leaves extraction in natural images:comparative study of preprocessing tools and segmentation methods[J]. IEEE Transactions on Image Processing,2015,24(5):1549-1560.
[6]SCHARR H, PRIDMORE T, TSAFTARIS S A. Computer vision problems in plant phenotyping[C]. Venice,Italy:IEEE,2017.
[7]UCHIYAMA H, SAKURAI S, MISHIMA M, et al. An easy-to-setup 3D phenotyping platform for KOMATSUNA dataset[C]. Venice,Italy:IEEE,2017.
[8]蒋焕煜,施经挥,任烨,等. 机器视觉在幼苗自动移钵作业中的应用[J]. 农业工程学报,2009,25(5):127-131.
[9]孙国祥,汪小旵,何国敏. 基于边缘链码信息的番茄苗重叠叶面分割算法[J]. 农业工程学报,2010,26(12):206-211.
[10]王纪章,顾容榕,孙力,等. 基于Kinect相机的穴盘苗生长过程无损监测方法[J]. 农业工程学报,2021,52(2):227-235.
[11]伍艳莲,赵力,姜海燕. 基于改进均值漂移算法的绿色作物图像分割方法[J]. 农业工程学报,2014,30(24):161-167.
[12]胡静,陈志泊,张荣国, 等. 基于鲁棒随机游走的交互式植物叶片分割[J]. 模式识别与人工智能,2018,31(10):933-940.
[13]KAN J, GU Z, MA C, et al. Leaf segmentation algorithm based on improved U-shaped network under complex background[C]. Chongqing,China:IEEE,2021.
[14]YIN X, LIU X, CHEN J, et al. Multi-leaf alignment from fluorescence plant images[C]. Steamboat Springs,CO,USA:IEEE,2014.
[15]REN M, ZEMEL R S. End-to-end instance segmentation with recurrent attention[C]. Honolulu,HI,USA:IEEE,2017.
[16]HE K, GKIOXARI G, DOLLR P, et al. Mask R-CNN[C]. Venice,Italy:IEEE,2017.
[17]乔虹,冯全,赵兵,等. 基于Mask R-CNN的葡萄叶片实例分割[J]. 林业机械与木工设备,2019,47(10):15-22.
[18]袁山,汤浩,郭亚. 基于改进Mask R-CNN模型的植物叶片分割方法[J]. 农业工程学报,2022,38(1):212-220.
[19]邢洁洁,谢定进,杨然兵,等.基于YOLOv5s的农田垃圾轻量化检测方法[J]. 农业工程学报,2022,38(19):153-161.
[20]CHENG T, WANG X, CHEN S, et al. Sparse instance activation for real-time instance segmentation[C]. New Orleans,LA,USA:IEEE,2022.
[21]HU H, GU J, ZHANG Z, et al. Relation networks for object detection[C]. Salt Lake City,UT,USA:IEEE,2018.
[22]REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[23]GUO R, NIU D, QU L, et al. SOTR:segmenting objects with transformers[C]. Montreal,QC,Canada:IEEE,2021.
[24]WANG X, ZHANG R, KONG T, et al. SOLOv2: dynamic and fast instance segmentation[C]. Red Hook,NY,USA:Curran Associates Inc.,2020.
[25]BUSLAEV A, IGLOVIKOV V I, KHVEDCHENYA E, et al. Albumentations:fast and flexible image augmentations:2[J]. Information,2020,11(2):125.
[26]LIN T-Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Honolulu,HI,USA:IEEE,2017.
[27]ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]. Honolulu,HI,USA:IEEE,2017.
[28]TIAN Z, SHEN C, CHEN H, et al. FCOS:fully convolutional one-stage object detection[C]. Seoul,South Korea:IEEE,2019.
[29]ZHANG H, HU W, WANG X. ParC-Net:position aware circular convolution with merits from ConvNets and transformer[C]. Tel Aviv,Israel:Springer Nature Switzerland,2022.
[30]YU W, LUO M, ZHOU P, et al. Metaformer is actually what you need for vision[C]. New Orleans,LA,USA:IEEE,2022.
[31]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[32]LEE Y, PARK J. CenterMask:real-time anchor-free instance segmentation[C]. Seattle,WA,USA:IEEE,2020.
[33]STEWART R, ANDRILUKA M, NG A Y. End-to-end people detection in crowded scenes[C]. Las Vegas,NV,USA:IEEE,2016.
[34]CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]. Salt Lake City,UT,USA:IEEE,2018.