参考文献/References:
[1]PIERCE F J, NOWAK P. Aspects of precision agriculture[J]. Advances in Agronomy,1999,67:1-85.
[2]AGARWAL M, GUPTA S K, BISWAS K K. Development of efficient CNN model for tomato crop disease identification[J]. Sustainable Computing:Informatics and Systems,2020,28:100407.
[3]REN F, LIU W, WU G. Feature reuse residual networks for insect pest recognition[J]. IEEE Access,2019,7:122758-122768.
[4]彭红星,何慧君,高宗梅,等. 基于改进ShuffleNetV2模型的荔枝病虫害识别方法[J]. 农业机械学报,2022,53(12):290-300.
[5]曹乐平. 基于机器视觉的植物病虫害实时识别方法[J]. 中国农学通报,2015,31(20):244-249.
[6]ALVES A N, SOUZA W S R, BORGES D L. Cotton pests classification in field-based images using deep residual networks[J]. Computers and Electronics in Agriculture,2020,174:105488.
[7]BOLLIS E, MAIA H, PEDRINI H, et al. Weakly supervised attention-based models using activation maps for citrus mite and insect pest classification[J]. Computers and Electronics in Agriculture, 2022, 195: 106839.
[8]HUANG M L, CHUANG T C, LIAO Y C. Application of transfer learning and image augmentation technology for tomato pest identification[J]. Sustainable Computing:Informatics and Systems,2022,33:100646.
[9]周维,牛永真,王亚炜,等. 基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报,2022,38(3):685-695.
[10]温长吉,王启锐,陈洪锐,等. 面向大规模多类别的病虫害识别模型[J]. 农业工程学报,2022,38(8):169-177.
[11]罗昱晟,冉力争,张小荣,等. 基于大数据与图像识别的柑橘病虫害防治系统的设计与实现[J]. 智能计算机与应用,2020,10(12):170-173.
[12]骆润玫,殷惠莉,刘伟康,等. 基于YOLOv5-C的广佛手病虫害识别[J]. 华南农业大学学报,2023,44(1):151-160.
[13]杨英茹,吴华瑞,张燕,等. 基于复杂环境的番茄叶部图像病虫害识别[J]. 中国农机化学报,2021,42(9):177-186.
[14]IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[J]. arXiv,2016. DOI:10.48550/arXiv.1602.07360.
[15]ERTAM F, YAKUT O F, TUNCER T. Pattern lock screen detection method based on lightweight deep feature extraction[J]. Neural Computing and Applications,2023,35(2):1549-1567.
[16]ZHONG H, LYU Y, YUAN R, et al. Bearing fault diagnosis using transfer learning and self-attention ensemble lightweight convolutional neural network[J]. Neurocomputing,2022,501:765-777.
[17]ZHONG Y, HAO J, LIU Q, et al. Novel diagnosis method for GIS mechanical defects based on an improved lightweight CNN model with load adaptive matching[J]. IEEE Transactions on Industrial Informatics,2023,19(11):11041-11051.
[18]MINU M, CANESSANE R, RAMESH S. Optimal squeeze net with deep neural network-based arial image classification model in unmanned aerial vehicles[J]. Traitement Du Signal,2022, 39(1):275-281.
[19]PANG Y, ZHANG Y, WANG Y, et al. SOCNet: a lightweight and fine-grained object recognition network for satellite on-orbit computing[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60.DOI:10.1109/TGRS.2022.3216215.
[20]LI Y, NIE J, CHAO X. Do we really need deep CNN for plant diseases identification?[J]. Computers and Electronics in Agriculture, 2020,178:105803.
[21]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. Salt Lake City,UT,USA:IEEE,2018.
[22]WANG Q, WU B, ZHU P, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]. Seattle, WA, USA:IEEE,2020.
[23]WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. Munich,Germany:Springer,2018.
[24]KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[J]. 2017.DOI:10.48550/arXiv.1706.02515.
[25]HENDRYCKS D, GIMPEL K. Gaussian error linear units (gelus) [J]. arXiv,2016.DOI:10.48550/arXiv.1606.08415.
[26]RAMACHANDRAM P, ZOPH B, LE Q V. Searching for activation functions[J]. arXiv,2017.DOI:10.48550/arXiv.1710.05941.
[27]MISRA D. Mish: a self regularized non-monotonic neural activation function[J]. arXiv,2019.DOI:10.48550/arXiv.1908.08681.
[28]STERGIOU A, POPPE R, KALLIATAKIS G. Refining activation downsampling with SoftPool[C]. Montreal, Canada: IEEE,2021.
[29]ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]. Zurich,Switzerland:Springer,2014.
[30]李超,李锋,黄炜嘉. 基于并联卷积神经网络的水果品种识别[J]. 浙江农业学报,2022,34(11):2533-2541.
[31]WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]. Amsterdam, Netherland:Springer,2016.
[32]HUANG M, CHIN T. A database of eight commin tomato pest images[DB]. 2020.DOI:10.17632/s62zm6djd2.1.
[33]HUGHES D, SALATH’E M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[J]. arXiv,2015.DOI:10.48550/arXiv.1511.08060.
[34]蒋清健,姚勇,付志军,等. 基于改进卷积神经网络算法的番茄叶片病害识别[J]. 江苏农业科学,2022,50(20):29-34.
[35]徐姗姗,吕净妍,陈芳媛. 深度卷积神经网络的遥感植被检测方法[J]. 南京林业大学学报(自然科学版),2022,46(4):185-193.
[36]牛学德,高丙朋,南新元,等. 基于改进DenseNet卷积神经网络的番茄叶片病害检测[J]. 江苏农业学报,2022,38(1):129-134.
[37]棘玉,尹显明,严恩萍,等. 基于相机拍照的油茶果形状特征提取研究[J]. 南京林业大学学报(自然科学版),2022,46(2):63-70.
相似文献/References:
[1]孙云云,江朝晖,董伟,等.基于卷积神经网络和小样本的茶树病害图像识别[J].江苏农业学报,2019,(01):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
SUN Yun-yun,JIANG Zhao-hui,DONG Wei,et al.Image recognition of tea plant disease based on convolutional neural network and small samples[J].,2019,(03):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
[2]邱洪涛,孙裴,侯金波,等.基于Caffe的猪肉新鲜度分级的设计与实现[J].江苏农业学报,2019,(02):461.[doi:doi:10.3969/j.issn.1000-4440.2019.02.029]
QIU Hong-tao,SUN Pei,HOU Jin-bo,et al.Design and implementation of pork freshness grading based on Caffe[J].,2019,(03):461.[doi:doi:10.3969/j.issn.1000-4440.2019.02.029]
[3]牛学德,高丙朋,南新元,等.基于改进DenseNet卷积神经网络的番茄叶片病害检测[J].江苏农业学报,2022,38(01):129.[doi:doi:10.3969/j.issn.1000-4440.2022.01.015]
NIU Xue-de,GAO Bing-peng,NAN Xin-yuan,et al.Detection of tomato leaf disease based on improved DenseNet convolutional neural network[J].,2022,38(03):129.[doi:doi:10.3969/j.issn.1000-4440.2022.01.015]