[1]李明,颉嘉丽,石铭福,等.外源2,4-表油菜素内酯对碱性盐胁迫下马铃薯根系生长、生理特性及土壤酶活性的影响[J].江苏农业学报,2024,(03):394-402.[doi:doi:10.3969/j.issn.1000-4440.2024.03.002]
 LI Ming,XIE Jia-li,SHI Ming-fu,et al.Effects of exogenous 2,4-epibrassinolide on root growth, physiological characteristics and soil enzyme activities of potato under alkaline salt stress[J].,2024,(03):394-402.[doi:doi:10.3969/j.issn.1000-4440.2024.03.002]
点击复制

外源2,4-表油菜素内酯对碱性盐胁迫下马铃薯根系生长、生理特性及土壤酶活性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年03期
页码:
394-402
栏目:
遗传育种·生理生化
出版日期:
2024-03-30

文章信息/Info

Title:
Effects of exogenous 2,4-epibrassinolide on root growth, physiological characteristics and soil enzyme activities of potato under alkaline salt stress
作者:
李明1颉嘉丽1石铭福1康益晨1张卫娜1刘玉汇2杨昕宇3秦舒浩1
(1.甘肃农业大学园艺学院,甘肃兰州730070;2.甘肃省作物遗传改良与种质创新重点实验室,甘肃兰州730070;3.甘肃省农业科学院马铃薯研究所,甘肃兰州730070)
Author(s):
LI Ming1XIE Jia-li1SHI Ming-fu1KANG Yi-chen1ZHANG Wei-na1LIU Yu-hui2YANG Xin-yu3QIN Shu-hao1
(1.College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;2.Gansu Provincial Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China;3.Potato Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China)
关键词:
24-表油菜素内酯碱性盐胁迫马铃薯根系形态生理特性土壤酶活性
Keywords:
24-epibrassinolidealkaline salt stresspotatoroot morphologyphysiological characteristicssoil enzyme activity
分类号:
S532
DOI:
doi:10.3969/j.issn.1000-4440.2024.03.002
摘要:
为探究外源2,4-表油菜素内酯(EBR)对碱性盐胁迫下马铃薯根系形态、生理特性及土壤酶活性的影响,本研究以马铃薯大西洋为试验材料进行盆栽试验,设置不添加NaHCO3(CK)和添加300 mmol/L NaHCO3(T0),以及添加300 mmol/L NaHCO3后喷施0.25 μmol/L(T1)、0.50 μmol/L(T2)、1.00 μmol/L(T3)、2.00 μmol/L(T4)外源EBR,共6个处理。结果表明,300 mmol/L NaHCO3(T0)胁迫抑制马铃薯根系的生长发育、生理特性及土壤酶活性。喷施不同浓度外源EBR均能缓解NaHCO3对马铃薯的胁迫,相比于T0处理,T1处理~T4处理的根粗、根表面积、根体积、根尖数、根系活力以及根系干质量均得到提高;整个生育期根系相对电导率、丙二醛(MDA)含量、过氧化氢含量及超氧阴离子含量明显下降;脯氨酸(Pro)含量以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、脲酶、蔗糖酶、碱性磷酸酶、脱氢酶活性增强。对19个指标进行主成分分析,依据主成分得分排序,外源EBR对马铃薯碱性盐胁迫缓解能力由高到低为T3>T2>T4>T1>T0。因此1.00 μmol/L 的外源EBR可更好地改善盐碱胁迫下马铃薯根系的生长,增强生物膜的稳定性,提高抗氧化酶及土壤酶的活性,从而起到缓解盐碱胁迫的作用。
Abstract:
In order to explore the effects of exogenous 2,4-epibrassinolide (EBR) on potato root morphology, physiological characteristics and soil enzyme activities under alkaline salt stress, a pot experiment was carried out with potato “Atlantic” as the test material, and no NaHCO3 (CK) and adding 300 mmol/L NaHCO3 (T0) were set up. After addition, exogenous EBR was sprayed with 0.25 μmol/L (T1), 0.50 μmol/L (T2), 1.00 μmol/L (T3), 2.00 μmol/L (T4), a total of six treatments. The results showed that 300 mmol/L NaHCO3 (T0) stress inhibited the growth, development and physiological characteristics of potato roots, and soil enzyme activities. Exogenous EBR at different concentrations could alleviate the stress of NaHCO3 on potatoes. Compared with T0 treatment, root diameter, root surface area, root volume, root tip number, root vigor and root dry weight of T1 treatment-T4 treatment were improved. Root relative electrical conductivity, malondialdehyde (MDA) content, hydrogen peroxide content and superoxide anion content decreased during the whole growth period. Proline (Pro) content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), urease, sucrase, alkaline phosphatase and dehydrogenase activities were enhanced. Based on the principal component analysis of 19 indexes, the ability of exogenous EBR to alleviate potato alkaline salt stress from high to low was T3>T2>T4>T1> T0. Therefore, 1.00 μmol/L exogenous EBR could better improve the growth of potato roots, enhance the stability of biofilm, and improve the activities of antioxidant enzymes and soil enzymes under salt-alkali stress, so as to alleviate the salt-alkali stress.

参考文献/References:

[1]赵明辉,白雅梅,孟令波,等. 二倍体马铃薯耐盐性评价及其指标筛选[J]. 生态学杂志,2022,41(3):610-617.
[2]AGHAEI K, EHSANPOUR A, KOMATSU S. Proteome analysis of potato under salt stress[J]. Journal of Proteome Research,2008,7(11):4858-4868.
[3]LU Z Q, LIU D L, LIU S K. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports,2007,26(10):1909-1917.
[4]BOHNERT H J, JENSEN R G. Metabolic engineering for increased salt tolerance-the next step[J]. Functional Plant Biology,1996,23(5):661-667.
[5]SANWAL S K, KUMAR P, KESH H, et al. Salinity stress tolerance in potato cultivars:evidence from physiological and biochemical traits[J]. Plants,2022,11(14):1842.
[6]李青,秦玉芝,胡新喜,等. 马铃薯耐盐性研究进展[J]. 园艺学报,2017,44(12):2408-2424.
[7]FENG D, GAO Q, LIU J, et al. Categories of exogenous substances and their effect on alleviation of plant salt stress[J]. European Journal of Agronomy,2023,142:126656.
[8]CUI G C, XIAO X, ZHANG W J, et al. Exogenous silicon relieve drought stress and salt stress of Glycyrrhiza uralensis seedlings by regulating proline metabolism and nitrogen assimilation[J]. The Journal of Horticultural Science and Biotechnology,2021,96(6):728-737.
[9]IMRAN M, AAQIL KHAN M, SHAHZAD R, et al. Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis[J]. Molecules,2021,26(17):5116.
[10]ZHANG T G, SHI Z F, ZHANG X H, et al. Alleviating effects of exogenous melatonin on salt stress in cucumber[J]. Scientia Horticulturae,2020,262:109070.
[11]沈家涛,金雅芳,李金灵,等. 植物激素调控植物耐涝响应机理研究进展[J]. 植物生理学报,2022,58(4):643-653.
[12]KHALID A, AFTAB F. Effect of exogenous application of 24-epibrassinolide on growth, protein contents, and antioxidant enzyme activities of in vitro-grown Solanum tuberosum L. under salt stress[J]. In Vitro Cellular & Developmental Biology-Plant,2016,52(1):81-91.
[13]MAIA C F, PEREIRA Y C, DA SILVA B R S, et al. Exogenously applied 24-epibrassinolide favours stomatal performance, ROS detoxification and nutritional balance, alleviating oxidative damage against the photosynthetic apparatus in tomato leaves under nickel stress[J]. Journal of Plant Growth Regulation,2022,42:2196-2211. DOI:10.1007/s00344-022-10693-3.
[14]DONG Y G, WANG W W, HU G Q, et al. Role of exogenous 24-epibrassinolide in enhancing the salt tolerance of wheat seedlings[J]. Journal of Soil Science and Plant Nutrition,2017,17(3):554-569.
[15]康书瑜,庞春花,张永清,等. 干旱胁迫下外源水杨酸对藜麦生理效应及产量的影响[J]. 干旱区资源与环境,2022,36(12):151-157.
[16]HE Q L, WU X, LIU Y, et al. Elucidating the molecular mechanisms of exogenous melatonin for improving heat tolerance in Solanum tuberosum L. seedlings[J]. Scientia Horticulturae,2023,322:112423.
[17]YANG C H, WANG D D, ZHANG C, et al. Comprehensive analysis and expression profiling of PIN, AUX/LAX, and ABCB auxin transporter gene families in Solanum tuberosum under phytohormone stimuli and abiotic stresses[J]. Biology,2021,10(2):127.
[18]邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社,2007:159-165.
[19]陈建勋,王晓峰. 植物生理学实验指导[M]. 广州:华南理工大学出版社,2006:115-124.
[20]贾丽琴. 豆科植物土壤浸提液对马铃薯连作土壤微生物群落和酶活性的影响[D]. 兰州:甘肃农业大学,2016.
[21]KUMAR P, CHOUDHARY M, HALDER T, et al. Salinity stress tolerance and omics approaches:revisiting the progress and achievements in major cereal crops[J]. Heredity,2022,128(6):497-518.
[22]RUIZ K B, BIONDI S, MARTNEZ E A, et al. Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes[J]. Plant Biosystems,2016,150(2):357-371.
[23]RANGANI J, PARIDA A K, PANDA A, et al. Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme halophyte Salvadora persica L.[J]. Frontiers in Plant Science,2016,7:50.
[24]LI X Y, LI S X, WANG J H, et al. Exogenous abscisic acid alleviates harmful effect of salt and alkali stresses on wheat seedlings[J]. International Journal of Environmental Research and Public Health,2020,17:3770.
[25]ARIF M R, ISLAM M T, ROBIN A H K. Salinity stress alters root morphology and root hair traits in Brassica napus[J]. Plants,2019,8(7):192.
[26]DE DORLODOT S, FORSTER B, PAGS L, et al. Root system architecture: opportunities and constraints for genetic improvement of crops[J]. Trends in Plant Science,2007,12(10):474-481.
[27]GUPTA A, SINGH M, LAXMI A. Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis[J]. Plant Physiology,2015,168(1):307-320.
[28]HEYMAN J, COOLS T, VANDENBUSSCHE F, et al. ERF115 controls root quiescent center cell division and stem cell replenishment[J]. Science,2013,342(6160):860-863.
[29]吴志勇,顾红,程大伟,等. 油菜素内酯调控植物根系发育机制研究进展[J]. 中国农业科技导报,2022,24(2):68-76.
[30]高青海,郭远远,吴燕,等. 盐胁迫下外源褪黑素和Ca2+对甜瓜幼苗的缓解效应[J]. 应用生态学报,2017,28(6):1925-1931.
[31]MA L J, LI Y Y, YU C M, et al. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress[J]. Protoplasma,2012,249(2):393-399.
[32]王洋. 2,4-表油菜素内酯对水稻盐胁迫缓解的效应与利用[D]. 扬州:扬州大学,2022.
[33]PANCHA I, CHOKSHI K, MAURYA R, et al. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077[J]. Bioresource Technology,2015,189:341-348.
[34]杨雯一. 不同胁迫对各种植物体内抗氧化酶系统的影响综述[J]. 化工管理,2021(1):92-93.
[35]王军萍,宋留丽,郁志芳. 2,4-表油菜素内酯处理对不同温度贮藏中小白菜品质和生理生化的影响[J]. 食品工业科技,2022,43(9):349-358.
[36]NAEEM M, BASIT A, AHMAD I, et al. Effect of salicylic acid and salinity stress on the performance of tomato plants[J]. Gesunde Pflanzen,2020,72(4):393-402.
[37]张成龙,商美新,马梦雪,等. 肥料配施蚯蚓裂解液对马铃薯产量、品质和土壤酶活性影响[J]. 江苏农业科学,2023,51(1):110-116.
[38]张金峰,谭小兵,吕世保,等. 化肥减量配施炭基肥对烤烟产质量及土壤酶活性的影响[J]. 南方农业学报,2022,53(11):3079-3087.
[39]杜泽云,陶思敏,娄运生,等. 施用生物炭和硅肥对增温稻田土壤酶活性的影响[J]. 江苏农业科学,2023,51(1): 225-231.
[40]周郑雄,冯豪,丁继林,等. 复合微生物肥对植烟根际土壤团聚体稳定性和酶活性的影响[J]. 南方农业学报,2022,53(11):3088-3097.
[41]王宇,刘春成,李仁杰,等. 土壤酶活性对微咸水与再生水混合滴灌的响应与评估[J]. 排灌机械工程学报,2023,41(3):313-318.
[42]刘倩倩,彭孝楠,刘鑫,等. 踩踏干扰下紫金山土壤质量季节变化特征[J]. 南京林业大学学报(自然科学版),2022,46(3):185-193.
[43]吴春发,关浩然,张锦路,等. 含磷钝化剂对镉污染农田土壤酶活性的影响[J]. 江苏农业学报,2022,38(2):361-368.
[44]WOJEWDZKI P, LEMANOWICZ J, DEBSKA B, et al. Soil enzyme activity response under the amendment of different types of biochar[J]. Agronomy,2022,12(3):569.
[45]范志伟,张奇瑞,刘小林,等. 外源茉莉酸甲酯对连作草莓土壤酶活性和酚酸类物质含量的影响[J]. 江苏农业科学,2022,50(17):253-258.
[46]WANG Y F, GUO Y Y, ZHAO C F, et al. Exogenous melatonin achieves drought tolerance by improving photosynthesis in maize seedlings leaves[J]. Russian Journal of Plant Physiology,2021,68:718-727.
[47]ZHANG J, VRIELING K, KLINKHAMER P G L, et al. Exogenous application of plant defense hormones alters the effects of live soils on plant performance[J]. Basic and Applied Ecology,2021,56:144-155.

备注/Memo

备注/Memo:
收稿日期:2023-01-30基金项目:国家自然科学基金项目(32260455、32060441、32201810);国家现代农业产业技术体系项目(CARS-09-P14);甘肃省自然科学基金项目(22JR5RA858、23JRRA1339)作者简介:李明(1998-),男,甘肃通渭人,硕士研究生,主要从事蔬菜栽培与逆境生物学研究。(Tel)15294127084;(E-mail) 210309783@qq.com通讯作者:秦舒浩,(Tel)13893135572;(E-mail)qinsh@gsau.edu.cn
更新日期/Last Update: 2024-05-20