参考文献/References:
[1]许娜,叶桥平. 水稻种植与病虫害防治技术研究[J]. 种子科技,2022,40(21): 46-48.
[2]ES-SAADY Y, MAMMASS I E, YASSA M E, et al. Automatic recognition of plant leaves diseases based on serial combination of two SVM classifiers [C]. Tangiers:IEEE,2016.
[3]GAVHALE K R, GAWANDE U. An overview of the research on plant leaves disease detection using image processing techniques[J]. Iosr Journal of Computer Engineering (IOSR-JCE),2014,16(1):10-16.
[4]WANG G, SUN Y, WANG J. Automatic image-based plant disease severity estimation using deep learning[J]. Computational Intelligence and Neuroscience,2017. DOI:10.1155/2017/2917536.
[5]王献锋,张善文,王震,等. 基于叶片图像和环境信息的黄瓜病害识别方法[J].农业工程学报,2014,30(14):148-153.
[6]ZHANG S W, SHANG Y J, WANG L. Plant disease recognition based on plant leaf image[J]. Journal of Animal and Plant Sciences,2015,25(3):42-45.
[7]XIE C, WANG R, ZHANG J, et al. Multi-level learning features for automatic classification of field crop pests[J]. Computers and Electronics in Agriculture,2018,152:233-241.
[8]SANKARAN S, ASHISH M, REZA E, et al. A review of advanced techniques for detecting plant diseases[J]. Computers and Electronics in Agriculture,2010,72(1):1-13.
[9]LI W, CHEN P, WANG B, et al. Automatic localization and count of agricultural crop pests based on an improved deep learning pipeline[J]. Scientific Reports,2019,9:7024.
[10]孟亮,郭小燕,杜佳举,等. 一种轻量级CNN农作物病害图像识别模型[J]. 江苏农业学报,2021,37(5):1143-1150.
[11]WU Y, HE K. Group normalization[J]. International Journal of Computer Vision,2018,128(3):742-755.
[12]WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. Munich:ECCV,2018.
[13]HOWARD A G, ZHU M, CHEN B, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[J]. ArXiv,2017. DOI:10.48550/arXiv.1704.04861.
[14]KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[J]. Advances in Neural Information Processing Systems,2017,30:972-981.
[15]IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. Lille:PMLR,2015.
[16]王建明,陈响育,杨自忠,等. 不同数据增强方法对模型识别精度的影响[J]. 计算机科学,2022,49(增刊1): 418-423.
相似文献/References:
[1]王忠培,谢成军,董伟,等.基于多维间注意力机制的水稻病害识别模型[J].江苏农业学报,2024,(04):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]
WANG Zhong-pei,XIE Cheng-jun,DONG Wei,et al.Rice disease identification model based on multi-dimensional attention mechanism[J].,2024,(02):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]