参考文献/References:
[1]胡琼,吴文斌,宋茜,等. 农作物种植结构遥感提取研究进展[J]. 中国农业科学,2015,48(10):1900-1914.
[2]SALMON J M, FRIEDL M A, FROLKING S, et al. Global rain-fed,irrigated, and paddy croplands:a new high resolution mapderived from remote sensing, crop inventories and climate data[J]. International Journal of Applied Earth Observation & Geoinformation,2015,38:321-334.
[3]陈仲新,任建强,唐华俊,等. 农业遥感研究应用进展与展望[J]. 遥感学报,2016,20(5):748-767.
[4]刘焕军,邱政超,孟令华,等. 黑土区田块尺度遥感精准管理分区[J]. 遥感学报,2017,21(3):470-478.
[5]刘哲,刘帝佑,朱德海,等. 作物遥感精细识别与自动制图研究进展与展望[J]. 农业机械学报,2018,49(12):1-12.
[6]WU M, HUANG W, NIU Z, et al. Fine crop mapping by combining high spectral and high spatial resolution remote sensing data in complex heterogeneous areas[J]. Computers and Electronics in Agriculture,2017,139:1-9.
[7]YU B, SHANG S. Multi-year mapping of maize and sunflower in Hetao irrigation district of China with high spatial and temporal resolution vegetation index series[J]. Remote Sensing,2017,9(8):855.
[8]杨颖频,吴志峰,骆剑承,等. 时空协同的地块尺度作物分布遥感提取[J]. 农业工程学报,2021,37(7):166-174.
[9]张鹏,胡守庚. 地块尺度的复杂种植区作物遥感精细分类[J]. 农业工程学报,2019,35(20):125-134.
[10]ZHENG Y, WU B, ZHANG M, et al. Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products[J]. Sensors,2016,16(12):2099.
[11]GAO F, ANDERSON M C, ZHANG X, et al. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery[J]. Remote Sensing of Environment,2017,188:9-25.
[12]HAO P, ZHAN Y, WANG L, et al. Feature selection of time series MODIS data for early crop classification using random forest:a case study in Kansas, USA[J]. Remote Sensing,2015,7(5):5347-5369.
[13]王娜,李强子,杜鑫,等. 单变量特征选择的苏北地区主要农作物遥感识别[J]. 遥感学报,2017,21(4):519-530.
[14]SONOBE R, TANI H, WANG X, et al. Parameter tuning in the support vector machine and random forest and their performances in cross-and same-year crop classification using TerraSAR-X[J]. International Journal of Remote Sensing,2014,35(23):7898-7909.
[15]PELLETIER C, VALERO S, INGLADA J, et al. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas[J]. Remote Sensing of Environment,2016,187:156-168.
[16]DONG J, XIAO X, MENARGUEZ M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment,2016,185:142-154.
[17]邓刘洋,沈占锋,柯映明,等. 基于地块尺度多时相遥感影像的冬小麦种植面积提取[J]. 农业工程学报,2018,34(21):157-164.
[18]田海峰,邬明权,牛铮,等. 基于Radarsat-2 影像的复杂种植结构下旱地作物识别[J]. 农业工程学报,2015,31(23):154-159.
[19]黄启厅,覃泽林,曾志康. 多星数据协同的地块尺度作物分类与面积估算方法研究[J]. 地球信息科学学报,2016,18(5):708-717.
[20]韩衍欣,蒙继华. 面向地块的农作物遥感分类研究进展[J]. 国土资源遥感,2019,31(2):1-9.
[21]肖艳,姜琦刚,王斌,等. 基于ReliefF 和PSO 混合特征选择的面向对象土地利用分类[J]. 农业工程学报,2016,32(4):211-216.
[22]XIE E, WANG W, YU Z, et al. SegFormer:simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems,2021,34:12077-12090.