[1]郭标琦,王联国.基于多卷积神经网络融合的当归病虫害识别方法[J].江苏农业学报,2024,(01):121-129.[doi:doi:10.3969/j.issn.1000-4440.2024.01.013]
 GUO Biao-qi,WANG Lian-guo.Identification of Angelica sinensis diseases and insect pests based on the fusion of multiple convolutional neural networks[J].,2024,(01):121-129.[doi:doi:10.3969/j.issn.1000-4440.2024.01.013]
点击复制

基于多卷积神经网络融合的当归病虫害识别方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年01期
页码:
121-129
栏目:
农业信息工程
出版日期:
2024-01-30

文章信息/Info

Title:
Identification of Angelica sinensis diseases and insect pests based on the fusion of multiple convolutional neural networks
作者:
郭标琦王联国
(甘肃农业大学信息科学技术学院,甘肃兰州730000)
Author(s):
GUO Biao-qiWANG Lian-guo
(College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730000, China)
关键词:
当归病虫害分类卷积神经网络极度梯度提升(XGBoost)融合方法
Keywords:
classification of Angelica sinensis diseases and insect pestsconvolutional neural networkextreme gradient boosting (XGBoost) fusion method
分类号:
TP183;S24
DOI:
doi:10.3969/j.issn.1000-4440.2024.01.013
文献标志码:
A
摘要:
针对目前当归产业病虫害识别方法缺失、人工提取特征存在主观因素及卷积神经网络训练需要大量数据等不足,提出1种基于多卷积神经网络融合的当归病虫害识别方法。构建当归常见病虫害数据集;选择在当归病虫害数据集中表现性能最好的ResNet50、InceptionNetV3、VGG19、DenseNet201 4个网络作为模型融合的基学习器;使用XGBoost(极度梯度提升)算法作为元学习器,得到基于多卷积神经网络融合的当归病虫害识别模型。结果表明,该融合模型比单个卷积神经网络模型具有更高的识别准确率,并优于其他融合方法融合的模型,对当归病虫害识别的查准率、查全率、F1值分别达到98.33%、97.14%、97.68%。本研究提出的基于XGBoost融合方法融合的模型实现了当归常见病虫害的精确分类,对常见病害的识别准确率达到98.33%,为当归产业提供了一种有效的病虫害识别方法。
Abstract:
Aiming at the lack of identification methods for diseases and insect pests in Angelica sinensis industry, the subjective factors in the process of artificial feature extraction and the large amount of data required for training convolutional neural networks, a method for identification of diseases and insect pests of Angelica sinensis based on the fusion of multiple convolutional neural networks was proposed. The dataset of common diseases and insect pests of Angelica sinensis was constructed. Four networks, ResNet50, InceptionNetV3, VGG19 and DenseNet201, with the best performance on the dataset of Angelica sinensis were selected as the base learner for model fusion. The XGBoost (extreme gradient boosting) algorithm was used as a meta-learner to obtain the Angelica sinensis diseases and insect pests recognition model based on the fusion of multiple convolutional neural networks. The results showed that the fusion model had higher recognition accuracy than a single convolutional neural network model, and was superior to other fusion models. The precision rate, recall rate and F1 value of the identification of Angelica sinensis pests and diseases reached 98.33%, 97.14% and 97.68%, respectively. The model based on XGBoost fusion method proposed in this study realized the accurate classification of common diseases and insect pests of Angelica sinensis, and the identification accuracy rate of common diseases reached 98.33%, which provided an effective method for identification of diseases and insect pests in the industry of Angelica sinensis.

参考文献/References:

[1]李国业,张小玉,龙倩,等. 中药当归开发利用研究进展[J]. 农业与技术,2021,41(20):55-57.
[2]向璐,张巧艳,赵琦明,等. 黄芪-当归化学成分、药理作用及临床应用的研究进展[J]. 中草药,2022,53(7):2196-2213.
[3]陈苑,黎宝留,许二巾,等. 基于血流剪切力与炎性反应探讨当归补血汤治疗动脉粥样硬化的作用机制[J]. 中药新药与临床药理,2022,33(6):786-793.
[4]王雪振,张小雨,牟悦,等. 当归补血汤在恶性肿瘤中作用的研究进展[J]. 中国实验方剂学杂志,2022,28(9):214-220.
[5]陈书珍,季绪霞,杨成德,等. 甘肃省岷县当归病害调查及叶斑病田间药剂筛选[J]. 草业科学,2017,34(12):2470-2475.
[6]张驰,郭媛,黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用,2021,57(11):57-69.
[7]LI Z, LIU F, YANG W, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022,33(12):6999-7019.
[8]NI P, CHEN Z, CAO M. Research on crop disease recognition based on uniting multi-layer features[J]. Journal of Physics: Conference Series,2021,1961(1):012030.
[9]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas:IEEE,2016:770-778.
[10]QIU J, LU X L, WANG X X, et al. Research on rice disease identification model based on migration learning inVGG network[J]. IOP Conference Series: Earth and Environmental Science,2021,680(1):012087.
[11]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv,2015,1409. DOI:10.48550/arXiv.1409.1556.
[12]赵兵,冯全. 基于全卷积网络的葡萄病害叶片分割[J]. 南京农业大学学报,2018,41(4):752-759.
[13]马俊红,刘冬梅,李永亮, 等. 烟草病虫药害智能识别基准数据集构建及三维注意力模型设计[J]. 中国烟草学报,2021,27(5):52-60.
[14]SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas:IEEE,2016:2818-2826.
[15]樊湘鹏,周建平,许燕. 基于改进区域卷积神经网络的田间玉米叶部病害识别[J]. 华南农业大学学报,2020,41(6):82-91.
[16]LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324.
[17]SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Boston:IEEE,2015:1-9.
[18]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii:IEEE,2016:770-778.
[19]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Miami:IEEE,2017:4700-4708.
[20]PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009,22(10):1345-1359.
[21]张瑞青,李张威,郝建军,等. 基于迁移学习的卷积神经网络花生荚果等级图像识别[J]. 农业工程学报,2020,36(23):171-180.
[22]NGUYEN C V, LE K H, TRAN A M, et al. Learning for amalgamation: a multi-source transfer learning framework for sentiment classification[J]. Information Sciences,2022,590:1-14.
[23]龙满生,欧阳春娟,刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报,2018,34(18):194-201.
[24]SAGI O, ROKACH L. Ensemble learning: a survey[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2018,8(5):e1249.
[25]WANG H, WANG X, HAN J, et al. A recognition method of aggressive driving behavior based on ensemble learning[J]. Sensors,2022,22(2):644.
[26]李帷韬,曹仲达,朱程辉,等. 基于深度集成学习的青梅品级智能反馈认知方法[J]. 农业工程学报,2017,33(23):276-283.
[27]WOLPERT D H. Stacked generalization[J]. Neural Networks,1992,5(2):241-259.
[28]张猛,林辉,龙湘仁. 采用全卷积神经网络与Stacking算法的湿地分类方法[J]. 农业工程学报,2020,36(24):257-264.
[29]CHEN T, GUESTRIN C. Xgboost: a scalable tree boosting system[C]. New York:ACM,2016:785-794.

相似文献/References:

[1]张善文,谢泽奇,张晴晴.卷积神经网络在黄瓜叶部病害识别中的应用[J].江苏农业学报,2018,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
 ZHANG Shan-wen,XIE Ze-qi,ZHANG Qing-qing.Application research on convolutional neural network for cucumber leaf disease recognition[J].,2018,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
[2]杨晋丹,杨涛,苗腾,等.基于卷积神经网络的草莓叶部白粉病病害识别[J].江苏农业学报,2018,(03):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
 YANG Jin-dan,YANG Tao,MIAO Teng,et al.Recognition of powdery mildew disease of strawberry leaves based on convolutional neural network[J].,2018,(01):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
[3]丁承君,刘强,田军强,等.信息物理系统事件驱动下的农业气象监测系统[J].江苏农业学报,2018,(04):825.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
 DING Cheng-jun,LIU Qiang,TIAN Jun-qiang,et al.Agro-meteorological monitoring system based on event-driven modeling of cyber-physical system[J].,2018,(01):825.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
[4]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
 XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(01):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[5]孙云云,江朝晖,董伟,等.基于卷积神经网络和小样本的茶树病害图像识别[J].江苏农业学报,2019,(01):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
 SUN Yun-yun,JIANG Zhao-hui,DONG Wei,et al.Image recognition of tea plant disease based on convolutional neural network and small samples[J].,2019,(01):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
[6]王振,张善文,王献锋.基于改进全卷积神经网络的黄瓜叶部病斑分割方法[J].江苏农业学报,2019,(05):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
 WANG Zhen,ZHANG Shan-wen,WANG Xian-feng.Method for segmentation of cucumber leaf lesions based on improved full convolution neural network[J].,2019,(01):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
[7]徐岩,刘林,李中远,等.基于卷积神经网络的玉米品种识别[J].江苏农业学报,2020,(01):18.[doi:doi:10.3969/j.issn.1000-4440.2020.01.003]
 XU Yan,LIU Lin,LI Zhong-yuan,et al.Recognition of maize varieties based on convolutional neural network[J].,2020,(01):18.[doi:doi:10.3969/j.issn.1000-4440.2020.01.003]
[8]张善文,邵彧,齐国红,等.基于多尺度注意力卷积网络的作物害虫检测[J].江苏农业学报,2021,(03):579.[doi:doi:10.3969/j.issn.1000-4440.2021.03.005]
 ZHANG Shan-wen,SHAO Yu,QI Guo-hong,et al.Crop pest detection based on multi-scale convolutional network with attention[J].,2021,(01):579.[doi:doi:10.3969/j.issn.1000-4440.2021.03.005]
[9]袁红春,王敏,刘慧,等.基于特征交互与卷积网络的渔场预测模型[J].江苏农业学报,2021,(06):1501.[doi:doi:10.3969/j.issn.1000-4440.2021.05.019]
 YUAN Hong-chun,WANG Min,LIU Hui,et al.Fishing ground prediction model based on feature interaction and convolutional network[J].,2021,(01):1501.[doi:doi:10.3969/j.issn.1000-4440.2021.05.019]
[10]李婕,李毅,张瑞杰,等.无人机遥感影像在油菜品种识别中的应用[J].江苏农业学报,2022,38(03):675.[doi:doi:10.3969/j.issn.1000-4440.2022.03.013]
 LI Jie,LI Yi,ZHANG Rui-jie,et al.Application of UAV remote sensing image in rape variety identification[J].,2022,38(01):675.[doi:doi:10.3969/j.issn.1000-4440.2022.03.013]

备注/Memo

备注/Memo:
收稿日期:2022-11-16基金项目:甘肃省重点研发计划项目(21YF5GA088)作者简介:郭标琦(1998-),男,安徽淮北人,硕士研究生,研究方向为机器学习、深度学习。(E-mail)2297299417@qq.com通讯作者:王联国,(E-mail)wanglg@gsau.edu.cn
更新日期/Last Update: 2024-03-17