参考文献/References:
[1]贾文涛. 从土地整治向国土综合整治的转型发展[J]. 中国土地,2018(5):16-18.
[2]张霄羽,姚艳敏,颜祥照. 中红外光谱土壤有机质含量估测研究进展[J]. 中国土壤与肥料,2021(4):327-336.
[3]石朴杰,王世东,张合兵,等. 基于高光谱的复垦农田土壤有机质含量估测[J]. 土壤,2018,50(3):558-565.
[4]XIE R, XIAO H H. Application of remote sensing in the estimation of soil organic matter content[J]. Chemical Engineering Transactions,2018,66. DOI:10.3303/CET1866079.
[5]向红英,柳维扬,彭杰,等. 基于连续统去除法的南疆水稻土有机质含量预测[J]. 土壤,2016,48(2):389-394.
[6]韩兆迎,朱西存,刘庆,等. 黄河三角洲土壤有机质含量的高光谱反演[J]. 植物营养与肥料学报,2014,20(6):1545-1552.
[7]勾宇轩,赵云泽,李勇,等. 基于CWT-sCARS的东北旱作农田土壤有机质高光谱反演[J]. 农业机械学报,2022,53(3):331-337.
[8]南锋,朱洪芬,毕如田. 黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测[J]. 中国农业科学,2016,49(11):2126-2135.
[9]NAWAR S, BUDDENBAUM H, HILL J, et al. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy[J]. Soil and Tillage Research,2016,155:510-522.
[10]郑文博. 基于遥感数据的乐安河沿岸土壤有机质含量反演[D]. 淮南:安徽理工大学,2021.
[11]张娟娟,席磊,杨向阳,等. 砂姜黑土有机质含量高光谱估测模型构建[J]. 农业工程学报,2020,36(17):135-141.
[12]张森,卢霞,聂格格,等. SVM和BP检测滨海湿地土壤有机质[J]. 光谱学与光谱分析,2020,40(2):556-561.
[13]钟亮,郭熙,国佳欣,等. 基于不同卷积神经网络模型的红壤有机质高光谱估算[J]. 农业工程学报,2021,37(1):203-212.
[14]武彦清,张柏,宋开山,等. 松嫩平原土壤有机质含量高光谱反演研究[J]. 中国科学院研究生院学报,2011,28(2):187-194.
[15]陆龙妹,张平,卢宏亮,等. 淮北平原土壤高光谱特征及有机质含量预测[J]. 土壤,2019,51(2):374-380.
[16]文锡梅,兰安军,易兴松,等. 基于高光谱的喀斯特地区典型农田土壤有机质含量反演[J]. 西南农业学报,2018,31(8):1649-1654.
[17]王芳,刘林峰,冉秋霞,等. 施用秸秆炭对黄壤上小白菜生长及镉吸收的影响[J]. 绿色科技,2021,23(16):15-18.
[18]邸欣月,安显金,董慧,等. 贵州喀斯特区域土壤有机质的分布与演化特征[J]. 地球与环境,2015,43(6):697-708.
[19]郝冠军,黄懿珍,赵晓艺,等. 重铬酸钾外加热法测定土壤有机质的不确定度评定[J]. 上海农业学报,2011,27(3):103-109.
[20]肖艳,辛洪波,王斌,等. 基于小波变换和连续投影算法的黑土有机质含量高光谱估测[J]. 国土资源遥感,2021,33(2):33-39.
[21]郭云鹏,张弓,侯至丞,等. 采用SG平滑滤波的Stewart平台主从控制研究[J]. 自动化仪表,2019,40(2):30-33,38.
[22]XU P F, JIA Y J, JIANG M X. Blind audio source separation based on a new system model and the Savitzky-Golay filter[J]. Journal of Electrical Engineering,2021,72(3):208-212.
[23]ZHAO L, HU Y, ZHOU W, et al. Estimation methods for soil mercury content using hyperspectral remote sensing[J]. Sustainability, 2018, 10(7): 2474.
[24]高颖,王延仓,顾晓鹤,等. 基于微分变换定量反演土壤有机质及全氮含量[J]. 江苏农业科学,2020,48(24):220-225.
[25]ClOUTIS E A. Hyperspectral geological remote sensing: evaluation of analytical techniques[J]. International Journal of Remote Sensing,1996,17(12):2215-2242.
[26]徐明星,周生路,丁卫,等. 苏北沿海滩涂地区土壤有机质含量的高光谱预测[J]. 农业工程学报,2011,27(2):219-223.
[27]于雷,洪永胜,耿雷,等. 基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报,2015,31(14):103-109.
[28]ZHAO H Q, ZHAO X S. Nonlinear unmixing of minerals based on the log and continuum removal model[J]. European Journal of Remote Sensing,2019,52(1):277-293.
[29]MEVIK B H, WEHRENS R. The PLS package: principal component and partial least squares regression in R[J]. Journal of Statistical Software,2007,18(2):1-23.
[30]郄欣,齐雁冰,刘姣姣,等. 基于室内高光谱数据的多种类型土壤有机质估算模型比较[J]. 干旱地区农业研究,2021,39(4):109-116,124.
[31]孙玉婷,杨红云,王映龙,等. 基于支持向量机的水稻叶面积测定[J]. 江苏农业学报,2018,34(5):1027-1035.
[32]于欢,刘健,刘亚秋,等. 丘陵区耕地土壤有机质含量高光谱估测研究[J]. 山东农业大学学报(自然科学版),2021,52(4):648-653.
[33]孟亚琼. 改进的Adaboost算法在基因表达数据中的应用[D]. 杭州:中国计量大学,2018.
[34]江叶枫,郭熙,叶英聪,等. 应用集成BP神经网络模型预测土壤有机质空间分布[J]. 江苏农业学报,2017,33(5):1044-1050.
[35]刘清,关榆君. 电梯群控系统节能优化调度控制[J]. 计算机仿真,2018,35(10):340-344.
[36]孙浩然,赵志根,赵佳星,等. 珠海一号高光谱遥感的表层土壤有机质含量反演方法[J]. 遥感信息,2020,35(4):40-46.
[37]于雷,洪永胜,周勇,等. 高光谱估算土壤有机质含量的波长变量筛选方法[J]. 农业工程报,2016,32(13):95-102.
[38]陈祯. 基于近红外光谱分析的土壤水分信息的提取与处理[D]. 武汉:华中科技大学,2010.
[39]韩陈,唐强,韦杰. 紫色土和黄壤含水率的室内光谱反演[J]. 水土保持通报,2021,41(5):174-180,190.
[40]玉米提·买明,王雪梅. 连续小波变换的土壤有机质含量高光谱估测[J]. 光谱学与光谱分析,2022,42(4):1278-1284.
[41]周伟,谢利娟,杨晗,等. 基于高光谱的三江源区土壤有机质含量反演[J]. 土壤通报,2021,52(3):564-574.
[42]奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用,2011,47(3):123-124,128.
[43]卢志宏,刘辛瑶,常书娟,等. 基于BP神经网络的草原矿区表层土壤N/P高光谱反演模型[J]. 草业科学,2018,35(9):2127-2136.
相似文献/References:
[1]江叶枫,郭熙,叶英聪,等.应用集成BP神经网络模型预测土壤有机质空间分布[J].江苏农业学报,2017,(05):1044.[doi:doi:10.3969/j.issn.1000-4440.2017.05.013]
JIANG Ye-feng,GUO Xi,YE Ying-cong,et al.Spatial distribution of soil organic matter predicted by BP neural network ensemble model[J].,2017,(01):1044.[doi:doi:10.3969/j.issn.1000-4440.2017.05.013]
[2]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(01):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[3]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(01):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[4]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(01):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
[5]徐丽华,谢德体.土壤有机质含量预测精度对光谱预处理和特征波段的响应[J].江苏农业学报,2019,(06):1340.[doi:doi:10.3969/j.issn.1000-4440.2019.06.010]
XU Li-hua,XIE De-ti.Response of soil organic matter content prediction accuracy to preprocessing of spectra and feature bands[J].,2019,(01):1340.[doi:doi:10.3969/j.issn.1000-4440.2019.06.010]
[6]王婷,刘振华,彭一平,等.华南地区土壤有机质含量高光谱反演[J].江苏农业学报,2020,(02):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
WANG Ting,LIU Zhen-hua,PENG Yi-ping,et al.Predicting soil organic matter content in South China based on hyperspectral reflectance[J].,2020,(01):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
[7]朱淑鑫,杨宸,顾兴健,等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J].江苏农业学报,2020,(02):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
ZHU Shu-xin,YANG Chen,GU Xing-jian,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content[J].,2020,(01):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
[8]苗梦珂,王宝山,李长春,等.基于连续小波变换的冬小麦叶片最大净光合速率遥感估算[J].江苏农业学报,2020,(03):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
MIAO Meng-ke,WANG Bao-shan,LI Chang-chun,et al.Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform[J].,2020,(01):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
[9]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(01):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[10]赵懿,杜建军,张振华,等.秸秆还田方式对土壤有机质积累与转化影响的研究进展[J].江苏农业学报,2021,(06):1614.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]
ZHAO Yi,DU Jian-jun,ZHANG Zhen-hua,et al.Research progress on the effects of straw returning on soil organic matter accumulation and transformation[J].,2021,(01):1614.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]
[11]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(01):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]