[1]曾学亮,郭熙,钟亮,等.基于多源遥感特征融合与卷积神经网络(CNN)的丘陵地区水稻识别[J].江苏农业学报,2024,(01):93-102.[doi:doi:10.3969/j.issn.1000-4440.2024.01.010]
 ZENG Xue-liang,GUO Xi,ZHONG Liang,et al.Rice identification in hilly areas based on multi-source remote sensing feature fusion and convolutional neural networks (CNN)[J].,2024,(01):93-102.[doi:doi:10.3969/j.issn.1000-4440.2024.01.010]
点击复制

基于多源遥感特征融合与卷积神经网络(CNN)的丘陵地区水稻识别()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年01期
页码:
93-102
栏目:
农业信息工程
出版日期:
2024-01-30

文章信息/Info

Title:
Rice identification in hilly areas based on multi-source remote sensing feature fusion and convolutional neural networks (CNN)
作者:
曾学亮12郭熙12钟亮12吴俊12
(1.江西农业大学国土资源与环境学院,江西南昌330045;2.江西省鄱阳湖流域农业资源与生态重点实验室,江西南昌330045)
Author(s):
ZENG Xue-liang12GUO Xi12ZHONG Liang12WU Jun12
(1.College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China;2.Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, Nanchang 330045, China)
关键词:
水稻多源遥感数据卷积神经网络南方丘陵特征优选
Keywords:
paddy ricemulti-source remote sensing dataconvolutional neural networkssouthern hillsfeature preference
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2024.01.010
文献标志码:
A
摘要:
为探究卷积神经网络(CNN)算法和多源遥感优选特征数据融合对丘陵地区水稻种植区的识别效果和适用性,以江西省上高县为研究区,利用Sentinel-2与GF-1遥感影像数据,对研究区晚稻种植区域进行识别。选取影像波段特征、植被指数、纹理特征及地形特征等分类特征,用分离阈值法(SEaTH)筛选出对各类别分离度较大的特征变量。基于Sentinel-2优选特征数据、GF-1优选特征数据、Sentinel-2与GF-1优选特征融合数据,使用CNN分类算法进行晚稻识别,同时用支持向量机(SVM)、最大似然法(MLC)分类算法进行对比。结果表明,Sentinel-2与GF-1优选特征融合数据在CNN分类算法下对水稻的识别效果最好,总体精度、Kappa系数分别为96.19%、0.93,结合野外调查数据进行验证,实际验证精度达94.69%。由研究结果可知,Sentinel-2与GF-1优选特征融合数据在CNN分类算法下对丘陵地区水稻识别具有较好的效果和适用性,是丘陵地区水稻遥感识别的有效手段。
Abstract:
To investigate the effect and applicability of the fusion of convolutional neural networks (CNN) algorithm and multi-source remote sensing preferred feature data on the recognition of rice growing areas in hilly areas, we took Shanggao County, Jiangxi province as the study area, and used Sentinel-2 and GF-1 remote sensing image data to identify the late rice growing areas in the study area. Classification features such as image band features, vegetation indices, texture features and terrain features were selected, and the feature variables with greater separation for each category were screened out as the preferred feature set using the seperability and thresholds (SEaTH) algorithm. The fusion of Sentinel-2 and GF-1 preferred features and Sentinel-2 and GF-1 preferred features were compared with the CNN classification algorithm for late rice recognition, and the support vector machine (SVM) and maximum likelihood (MLC) classification algorithms were used to compare the results. The results showed that the fusion data of Sentinel-2 and GF-1 preferred features had the best recognition effect on rice under CNN classification algorithm. The overall accuracy and Kappa coefficient were 96.19% and 0.93, respectively, and the accuracy was 94.69% when combined with the field survey data for validation. According to the research results, the fusion of Sentinel-2 and GF-1 preferred features had good effect and applicability for rice recognition in hilly areas under CNN classification algorithm, and was an effective tool for remote sensing recognition of rice in hilly areas.

参考文献/References:

[1]孙华生,黄敬峰,李波,等. 中国水稻遥感信息获取区划研究[J].中国农业科学,2008,41(12):4039-4047.
[2]叶清,杨晓光,解文娟,等. 气候变暖背景下中国南方水稻生长季可利用率变化趋势[J].中国农业科学,2013,46(21):4399-4415.
[3]钱永兰,杨邦杰,焦险峰. 基于遥感抽样的国家尺度农作物面积统计方法评估[J]. 农业工程学报,2007,23(11):180-187.
[4]王迪,周清波,陈仲新,等. 空间抽样方法估算冬小麦播种面积[J]. 农业工程学报,2012,28(10):177-184.
[5]DONG J W, XIAO X M. Evolution of regional to global paddy rice mapping methods: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2016,119(1):214-227.
[6]孙庆松,张晓楠,陈利东,等. 基于Sentinel-2时序谐波特征的县域农作物分类[J]. 江苏农业学报,2022,38(4):967-975.
[7]宋茜,周清波,吴文斌,等. 农作物遥感识别中的多源数据融合研究进展[J]. 中国农业科学,2015,48(6):1122-1135.
[8]刘戈,姜小光,唐伯惠. 特征优选与卷积神经网络在农作物精细分类中的应用研究[J]. 地球信息科学学报,2021,23(6):1071-1081.
[9]DONG J W, XIAO X M, KOU W L, et al. Tracking the dynamics of paddy rice planting area in 1986—2010 through time series Landsat images and phenology-based algorithms[J]. Remote Sensing of Environment,2015,160:99-113.
[10]李亚妮,曹建君,杨树文,等. 基于决策树的大尺度复杂地区夏收作物遥感提取与分析[J]. 江苏农业学报,2022,38(5):1257-1264.
[11]张海东,田婷,张青,等. 基于GF-1影像的耕地地块破碎区水稻遥感提取[J]. 遥感技术与应用,2019,34(4):785-792.
[12]QIN Y W, XIAO X M, DONG J W, et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat8 (OLI), Landsat7 (ETM+) and MODIS imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:220-233.
[13]ZHONG L H, HU L N, ZHOU H. Deep learning based multi-temporal crop classification[J]. Remote Sensing of Environment,2019,221:430-443.
[14]KAMILARIS A, PRENAFETA-BOLDU F X. A review of the use of convolutional neural networks in agriculture[J]. The Journal of Agricultural Science,2018,156(3):312-322.
[15]奚雪,赵庚星,高鹏,等. 基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究——以黄三角垦利区为例[J]. 中国农业科学,2020,53(24):5005-5016.
[16]陈安旭,李月臣. 基于Sentinel-2影像的西南山区不同生长期水稻识别[J]. 农业工程学报,2020,36(7):192-199.
[17]石月婵,杨贵军,李鑫川,等. 融合多源遥感数据生成高时空分辨率数据的方法对比[J]. 红外与毫米波学报,2015,34(1):92-99.
[18]PUISSANT A, HIRSCH J, WEBER C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery[J]. International Journal of Remote Sensing,2005,26(4):733-745.
[19]GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology,2003,160(3):271-282.
[20]DASH J, CURRAN P J. The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing,1994,25(23):5403-5413.
[21]张磊,宫兆宁,王启为,等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报,2019,23(2):313-326.
[22]GITELSON A A, MERZLYAK M N. Remote estimation of chlorophyll content in higher plant leaves[J]. International Journal of Remote Sensing,1997,18(12):2691-2697.
[23]蒋丹丹,原娟,武文娟,等. 基于Sentinel-2卫星影像的面向对象城市水体提取[J]. 地理空间信息,2019,17(5):10-13,4.
[24]王大钊,王思梦,黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感,2019,31(3):157-165.
[25]JR HUNT E R, ROCK B N. Detection of changes in leaf water content using near- and middle-infrared reflectances[J]. Remote Sensing of Environment,1989,30(1):43-54.
[26]YANG X C, ZHAO S S, QIN X B, et al. Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening[J]. Remote Sensing,2017,9(6):596-614.
[27]HUETE A, DIDAN K, MIURA T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment,2002,83(1/2):195-213.
[28]JIANG Z Y, HUETE A R, DIDAN K, et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment,2008,112(10):3833-3845.
[29]RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment,1996,55(2):95-107.
[30]GITLSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote sensing of Environment,1996,58(3):289-298.
[31]YANG C, EVERITT J H, BRADFORD J M, et al. Airborne hyperspectral imagery and yield monitor data for mapping cotton yield variability[J]. Precision Agriculture,2004,5(5):445-461.
[32]黄文江,王纪华,刘良云,等. 冬小麦品质的影响因素及高光谱遥感监测方法[J]. 遥感技术与应用,2004(3):143-148.
[33] CHEN J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J]. Canadian Journal of Remote Sensing,1996,22(3):229-242.
[34]TUCKER C J, ELGIN J H, MCMURTREY J E, et al. Monitoring corn and soybean crop development with hand-held radiometer spectral data[J]. Remote Sensing of Environment,1979,8(3):237-248.
[35]欧阳玲,毛德华,王宗明,等. 基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析[J]. 农业工程学报,2017,33(11):147-156,316.
[36]FISHER A, FLOOD N, DANAHER T. Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment,2016,175:167-182.
[37]NUSSBAUM S, MENZ G, NUSSBAUM S, et al. SEaTH-a new tool for feature analysis[M]. New York,USA:Springer Verlag,2008:51-62.
[38]LI E, XIA J, DU P, et al. Integrating multilayer features of convolutional neural networks for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(10):5653-5665.
[39]廖秋红,何绍兰,谢让金,等. 基于近红外光谱的纽荷尔脐橙产地识别研究[J]. 中国农业科学,2015,48(20):4111-4119.
[40]张悦琦,李荣平,穆西晗,等. 基于多时相GF-6遥感影像的水稻种植面积提取[J]. 农业工程学报,2021,37(17):189-196.
[41]桑国庆,唐志光,毛克彪,等. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报,2022,48(9):2409-2420.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(01):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(01):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(01):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(01):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(01):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(01):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(01):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(01):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(01):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(01):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2022-11-18基金项目:国家重点研发计划项目(2020YFD1100605-04)作者简介:曾学亮(1997-),男,江西信丰人,硕士研究生,研究方向为农业遥感。(E-mail)Zengxl307@163.com通讯作者:郭熙,(E-mail)xig435@163.com
更新日期/Last Update: 2024-03-17