参考文献/References:
[1]SUN B, LIU N, ZHAO Y T, et al. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties [J]. Food Chemistry,2011,124(3):941-947.
[2]DENG M D, QIAN H M, CHEN L L, et al. Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts [J]. Food Chemistry,2017,222(5):1-5.
[3]王超. 甘蓝类蔬菜的营养与保健 [J]. 食品研究与开发,2002,23(5):66-67.
[4]RAMESH S A, TYERMAN S D, GILLIHAM M, et al. Gamma-Aminobutyric acid (GABA) signaling in plants [J]. Cellular and Molecular Life Sciences,2016,74 (9):1-29.
[5]RASHMI D, ZANAN R, JOHN S, et al. γ- aminobutyric acid (GABA): biosynthesis, role, commercial production, and applications [J]. Studies in Natural Products Chemistry,2018,57:413-452.
[6]SHELP B J, BOWN A W, ZAREI A. 4-Aminobutyrate (GABA): a metabolite and signal with practical significance [J]. Botany,2017,95:1015-1032.
[7]HIJZA F, KILLINY N. Exogenous GABA is quialy metabolized to succinic acid and fed into the plant TCA cycle [J]. Plant Signaling & Behavior,2019,14(3):e1573096.
[8]BATUSHANSKY A, KIRMA M, GRILLICH N, et al. Combined transcriptomics and metabolomics of Arabidopsis thaliana seedlings exposed to exogenous GABA suggest its role in plants is predominantly metabolic [J]. Molecular Plant,2014,7(6):1065-1068.
[9]SEIFIKALHOR M, ALINIAEIFARD S, HASSANI B, et al. Diverse role of γ-aminobutyric acid in dynamic plant cell responses [J]. Plant Cell Reports,2019,38(8):847-867.
[10]HIJAZ F, NEHELA Y, KILLINY N. Application of gamma-aminobutyric acid increased the level of phytohormones in Citrus sinensis [J]. Planta,2018,248(4):1-10.
[11]LI Y F, FAN Y, MA Y, et al. Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress [J]. Journal of Plant Growth Regulation,2017,36(2):436-49.
[12]EKI F . Exogenous GABA stimulates endogenous GABA and phenolic acid contents in tomato plants under salt stress [J]. Celal Bayar University Journal of Science,2018,14(1):61-64.
[13]NAYYAR H, KAUR R, KAUR S, et al. γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants [J]. Journal of Plant Growth Regulation,2014,33(2):408-419.
[14]YANG L W, LI J R, GAO H B, et al. Effects of exogenous substances on active oxygen metabolism and photosynthesis in tomato seedlings under drought stress [J]. Journal of Agricultural University of Hebei,2012,35(2):18-24.
[15]MA Y, WANG P, CHEN Z J, et al. GABA enhances physio-biochemical metabolism and antioxidant capacity of germinated hulless barley under NaCl stress [J]. Journal of Plant Physiology,2018,231:192-201.
[16]高俊凤. 植物生理学实验指导 [M]. 北京:高等教育出版社,2006.
[17]ZHANG Y T, JI J Z, SONG S W, et al. Growth, nutritional quality and health-promoting compounds in Chinese kale grown under different ratios of red: blue LED lights [J]. Agronomy,2020,10(9):1248.
[18]李静. 低温弱光下辣椒叶片中类胡萝卜素组分的变化及其品种耐性的关系研究 [D]. 兰州:甘肃农业大学,2018.
[19]MAO Y X, CHAI X R, ZHONG M, et al. Effects of nitrogen and magnesium nutrient on the plant growth, quality, photosynthetic characteristics, antioxidant metabolism, and endogenous hormone of Chinese kale (Brassica albograbra Bailey) [J]. Scientia Horticulturae,2022,303:111243.
[20]HU X H, XU Z R, XU W N, et al. Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress [J]. Plant Physiology and Biochemistry,2015,92:1-10.
[21]KENNEDY A, BIVENS A. Method for analyzing underivatized amino acids using liquid mass spectrometry system [J]. Agilent Technol Appl Note,2017,12:1-8.
[22]BARTYZELL I, PELCZAR K, PASZKOWSHI A. Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress [J]. Biologia Plantarum,2003,47(2):221-225.
[23]KHANNA R R, JAHAN B, IQBAL N, et al. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat [J]. Journal of Biotechnology,2021,325:73-82.
[24]黄娟,李兴发,黄山,等. γ-氨基丁酸浸种对不同温度胁迫下黄瓜种子萌发和幼苗生长的影响 [J]. 长江蔬菜,2014(12):30-35.
[25]LI X G, MENG Q W, JIANG G Q, et al. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle [J]. Photosynthetica,2003,41(2):259-265.
[26]KALHOR M S, ALINIAEIFARD S, SEIF M, et al. Enhanced salt tolerance and photosynthetic performance: implication of γ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants [J]. Plant Physiology and Biochemistry,2018,130:157-172.
[27]李武,涂攀峰,李光玉,等. 叶面喷施γ-氨基丁酸对糯玉米产量形成及光合特性的影响 [J]. 南方农业学报,2021,52(4):916-923.
[28]赵会杰,邹琦,于振文. 叶绿素荧光分析技术及其在植物光合机理研究中的应用 [J]. 河南农业大学学报,2000,34(3):248-251.
[29]张海龙,陈迎迎,杨立新,等. γ-氨基丁酸对植物生长发育和抗逆性的调节作用 [J]. 植物生理学报,2020,56(4):600-612.
[30]KIM J I, MURPHY A S, BAEK D, et al. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana [J]. Journal of Experimental Botany,2011,62:3981-3992.
[31]RODRIGUES C, VANDENBERGHE L P D, OLIVEIRA J D, et al. New perspectives of gibberellic acid production: a review [J]. Crit Rev Biotechnology,2011,32:263-273.
[32]HA S, VANKOVA R, YAMAGUCHI-SHINOZAKI K, et al. Cytokinins: metabolism and function in plant adaptation to environmental stresses [J]. Trends Plant Science,2012,17:172-179.
[33]王泳超,郑博元,顾万荣,等. γ-氨基丁酸对盐胁迫下玉米幼苗根系氧化损伤及内源激素的调控[J]. 农药学学报,2018,20(5):607-617.
[34]高洪波,李敬蕊,章铁军,等. 甘氨酸和谷氨酸与钼配施对生菜品质的影响 [J]. 西北植物学报,2010,30(5):968-973.
[35]付蓉. γ-氨基丁酸对作物幼苗生长发育的影响 [D]. 南京:南京农业大学,2012.
[36]张换换,白明月,夏秀英. γ-氨基丁酸对玻璃化胁迫下越橘试管苗生长及生理代谢的影响 [J]. 植物生理学报,2021,57(3):623-632.
[37]弓瑞娟,卢凤刚,夏庆平,等. γ-氨基丁酸对生菜硝酸盐含量和营养品质的影响 [J]. 河北农业大学学报,2012,35(3):31-35.
[38]李敬蕊,王祥,田真,等. 外源喷施不同浓度γ-氨基丁酸对韭菜生长及氮代谢的影响 [J]. 浙江农业学报,2015,27(9):1563-1568.
[39]田真,李敬蕊,王祥,等. 生菜硝酸还原酶基因的克隆及高氮水平下外源γ-氨基丁酸对其表达和叶片硝酸盐含量的影响 [J]. 西北植物学报,2015,35(6):1098-1105.
[40]姚小桐,张润芝,许宁,等. 不同品种芸薹属蔬菜中硫代葡萄糖苷含量的比较分析 [J]. 北方园艺,2018(21):30-36.
[41]林海鸣,郑晓鹤,周军,等. 硫代葡萄糖苷及异硫氰酸酯的抗癌和抗氧化作用进展 [J]. 中国现代应用药学,2015,32(4):520-528.
[42]周芷亦. GABA联合NaCl调控西兰花芽苗叶黄素积累的研究 [D]. 哈尔滨:东北林业大学,2021.
[43]何锐,谭星,高美芳,等. 添加不同浓度海藻肥对水培芥蓝生长及品质的影响 [J]. 植物营养与肥料学报,2020,26(11):2051-2059.
[44]SOK-ETOWSKA A, OSZMIANSKI J, WOJDYEO A. Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap [J]. Food Chemistry,2007,103(3):853-859.
[45]THIRUVENGADAM M, KIM S H, CHUNG L M. Influence of amphetamine, γ-aminobutyric acid, and fosmidomycin on metabolic, transcriptional variations and determination of their biological activities in turnip (Brassica rapa ssp. rapa) [J]. South African Journal of Botany,2016,103:181-192.
[46]JI J, SHI Z, XIE T T, et al. Responses of GABA shunt coupled with carbon and nitrogen metabolism in poplar under NaCl and CdCl2 stresses [J]. Ecotoxicology and Environmental Safety,2020,193:110322.
[47]王贺. 外源GABA对盐胁迫下西伯利亚白刺多胺,脯氨酸代谢和GABA支路的调控作用 [D]. 哈尔滨:东北农业大学,2021.