[1]刘阳,张婧,高晓萍,等.外源γ-氨基丁酸对芥蓝生长及品质的影响[J].江苏农业学报,2023,(09):1927-1937.[doi:doi:10.3969/j.issn.1000-4440.2023.09.015]
 LIU Yang,ZHANG Jing,GAO Xiao-ping,et al.Effects of exogenous γ-aminobutyric acid on growth and quality of Chinese kale[J].,2023,(09):1927-1937.[doi:doi:10.3969/j.issn.1000-4440.2023.09.015]
点击复制

外源γ-氨基丁酸对芥蓝生长及品质的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年09期
页码:
1927-1937
栏目:
园艺
出版日期:
2023-12-31

文章信息/Info

Title:
Effects of exogenous γ-aminobutyric acid on growth and quality of Chinese kale
作者:
刘阳张婧高晓萍常有麟刘思恬杨滟韩康宁颉建明
(甘肃农业大学园艺学院,甘肃兰州730070)
Author(s):
LIU YangZHANG JingGAO Xiao-pingCHANG You-linLIU Si-tianYANG YanHAN Kang-ningXIE Jian-ming
(College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China)
关键词:
γ-氨基丁酸芥蓝生物量内源激素营养品质
Keywords:
γ-aminobutyric acidChinese kalebiomassendogenous hormonesnutritional quality
分类号:
S635.9
DOI:
doi:10.3969/j.issn.1000-4440.2023.09.015
文献标志码:
A
摘要:
为揭示γ-氨基丁酸(GABA)对芥蓝(Brassica albograbra L.H.Bailey)生长与品质影响的生理机制,本研究采取盆栽试验的方式,研究叶面喷施不同浓度GABA(0 mmol/L、25 mmol/L、50 mmol/L、75 mmol/L、100 mmol/L、125 mmol/L)对芥蓝生长、营养品质、光合特性及内源激素影响。结果表明,不同浓度的GABA均能不同程度地提高芥蓝叶片叶绿素含量、净光合速率(Pn)、蒸腾速率(Tr)以及PSⅡ最大光化学效率(Fv/Fm),降低非光化学淬灭系数(NPQ)。适宜浓度GABA(75 mmol/L)显著增加芥蓝的株高、茎粗、鲜质量和干质量,显著增加叶片中可溶性糖、维生素C、可溶性蛋白质、游离氨基酸、总硫代葡萄糖苷、总酚及类黄酮含量,显著增加花茎中可溶性糖、维生素C、游离氨基酸及总硫代葡萄糖苷含量,显著降低叶片及花茎中硝酸盐含量,显著增加芥蓝叶片中玉米素(ZT)、赤霉素(GA3)、生长素(IAA)和脱落酸(ABA)等内源激素含量。同时,外源喷施GABA可以显著诱导芥蓝叶片和花茎中内源GABA和谷氨酸的积累,提高谷氨酸脱羧酶(GAD)的活性。本研究结果将为提高芥蓝产量和品质的化控技术运用提供理论参考。
Abstract:
To reveal the physiological mechanism of γ-aminobutyric acid (GABA) in influencing the growth and quality of Chinese kale (Brassica albograbra L.H.Bailey), pot experiment was adopted to study the effects of different concentrations of GABA (0 mmol/L, 25 mmol/L, 50 mmol/L, 75 mmol/L, 100 mmol/L, 125 mmol/L) on growth, nutritional quality, photosynthetic characteristics and endogenous hormone of Chinese kale by foliar spraying. The results showed that under different concentrations of GABA, the chlorophyll content, net photosynthetic rate (Pn), transpiration rate (Tr) and the maximum photochemical efficiency (Fv/Fm) of PSⅡ of the Chinese kale leaves could be enhanced inordinately, and the non-photochemical quenching coefficient (NPQ) could be reduced. Compared with CK, appropriate concentration of GABA (75 mmol/L) could increase plant height, stem thickness, fresh weight and dry weight of Chinese kales significantly, and could significantly increase contents of soluble sugars, vitamin C, soluble proteins, free amino acids, total glucosinolates, total phenols and flavonoids in leaves. Besides, contents of soluble sugars, vitamin C, free amino acids and total glucosinolates in the flower stalks were significantly increased, while nitrate contents in the leaves and flower stalks were significantly reduced, contents of endogenous hormones such as zeatin (ZT), gibberellin3 (GA3), auxin (IAA) and abscisic acid (ABA) in Chinese kale leaves were significantly increased. Exogenous spraying of GABA could significantly induce the accumulation of endogenous GABA and glutamic acid in Chinese kale leaves and flower stalks and enhance the activity of glutamic acid decarboxylase (GAD). The study results will provide theoretical reference for the application of chemical control technology used to improve the yield and quality of Chinese kale.

参考文献/References:

[1]SUN B, LIU N, ZHAO Y T, et al. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties [J]. Food Chemistry,2011,124(3):941-947.
[2]DENG M D, QIAN H M, CHEN L L, et al. Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts [J]. Food Chemistry,2017,222(5):1-5.
[3]王超. 甘蓝类蔬菜的营养与保健 [J]. 食品研究与开发,2002,23(5):66-67.
[4]RAMESH S A, TYERMAN S D, GILLIHAM M, et al. Gamma-Aminobutyric acid (GABA) signaling in plants [J]. Cellular and Molecular Life Sciences,2016,74 (9):1-29.
[5]RASHMI D, ZANAN R, JOHN S, et al. γ- aminobutyric acid (GABA): biosynthesis, role, commercial production, and applications [J]. Studies in Natural Products Chemistry,2018,57:413-452.
[6]SHELP B J, BOWN A W, ZAREI A. 4-Aminobutyrate (GABA): a metabolite and signal with practical significance [J]. Botany,2017,95:1015-1032.
[7]HIJZA F, KILLINY N. Exogenous GABA is quialy metabolized to succinic acid and fed into the plant TCA cycle [J]. Plant Signaling & Behavior,2019,14(3):e1573096.
[8]BATUSHANSKY A, KIRMA M, GRILLICH N, et al. Combined transcriptomics and metabolomics of Arabidopsis thaliana seedlings exposed to exogenous GABA suggest its role in plants is predominantly metabolic [J]. Molecular Plant,2014,7(6):1065-1068.
[9]SEIFIKALHOR M, ALINIAEIFARD S, HASSANI B, et al. Diverse role of γ-aminobutyric acid in dynamic plant cell responses [J]. Plant Cell Reports,2019,38(8):847-867.
[10]HIJAZ F, NEHELA Y, KILLINY N. Application of gamma-aminobutyric acid increased the level of phytohormones in Citrus sinensis [J]. Planta,2018,248(4):1-10.
[11]LI Y F, FAN Y, MA Y, et al. Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress [J]. Journal of Plant Growth Regulation,2017,36(2):436-49.
[12]EKI F . Exogenous GABA stimulates endogenous GABA and phenolic acid contents in tomato plants under salt stress [J]. Celal Bayar University Journal of Science,2018,14(1):61-64.
[13]NAYYAR H, KAUR R, KAUR S, et al. γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants [J]. Journal of Plant Growth Regulation,2014,33(2):408-419.
[14]YANG L W, LI J R, GAO H B, et al. Effects of exogenous substances on active oxygen metabolism and photosynthesis in tomato seedlings under drought stress [J]. Journal of Agricultural University of Hebei,2012,35(2):18-24.
[15]MA Y, WANG P, CHEN Z J, et al. GABA enhances physio-biochemical metabolism and antioxidant capacity of germinated hulless barley under NaCl stress [J]. Journal of Plant Physiology,2018,231:192-201.
[16]高俊凤. 植物生理学实验指导 [M]. 北京:高等教育出版社,2006.
[17]ZHANG Y T, JI J Z, SONG S W, et al. Growth, nutritional quality and health-promoting compounds in Chinese kale grown under different ratios of red: blue LED lights [J]. Agronomy,2020,10(9):1248.
[18]李静. 低温弱光下辣椒叶片中类胡萝卜素组分的变化及其品种耐性的关系研究 [D]. 兰州:甘肃农业大学,2018.
[19]MAO Y X, CHAI X R, ZHONG M, et al. Effects of nitrogen and magnesium nutrient on the plant growth, quality, photosynthetic characteristics, antioxidant metabolism, and endogenous hormone of Chinese kale (Brassica albograbra Bailey) [J]. Scientia Horticulturae,2022,303:111243.
[20]HU X H, XU Z R, XU W N, et al. Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress [J]. Plant Physiology and Biochemistry,2015,92:1-10.
[21]KENNEDY A, BIVENS A. Method for analyzing underivatized amino acids using liquid mass spectrometry system [J]. Agilent Technol Appl Note,2017,12:1-8.
[22]BARTYZELL I, PELCZAR K, PASZKOWSHI A. Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress [J]. Biologia Plantarum,2003,47(2):221-225.
[23]KHANNA R R, JAHAN B, IQBAL N, et al. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat [J]. Journal of Biotechnology,2021,325:73-82.
[24]黄娟,李兴发,黄山,等. γ-氨基丁酸浸种对不同温度胁迫下黄瓜种子萌发和幼苗生长的影响 [J]. 长江蔬菜,2014(12):30-35.
[25]LI X G, MENG Q W, JIANG G Q, et al. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle [J]. Photosynthetica,2003,41(2):259-265.
[26]KALHOR M S, ALINIAEIFARD S, SEIF M, et al. Enhanced salt tolerance and photosynthetic performance: implication of γ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants [J]. Plant Physiology and Biochemistry,2018,130:157-172.
[27]李武,涂攀峰,李光玉,等. 叶面喷施γ-氨基丁酸对糯玉米产量形成及光合特性的影响 [J]. 南方农业学报,2021,52(4):916-923.
[28]赵会杰,邹琦,于振文. 叶绿素荧光分析技术及其在植物光合机理研究中的应用 [J]. 河南农业大学学报,2000,34(3):248-251.
[29]张海龙,陈迎迎,杨立新,等. γ-氨基丁酸对植物生长发育和抗逆性的调节作用 [J]. 植物生理学报,2020,56(4):600-612.
[30]KIM J I, MURPHY A S, BAEK D, et al. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana [J]. Journal of Experimental Botany,2011,62:3981-3992.
[31]RODRIGUES C, VANDENBERGHE L P D, OLIVEIRA J D, et al. New perspectives of gibberellic acid production: a review [J]. Crit Rev Biotechnology,2011,32:263-273.
[32]HA S, VANKOVA R, YAMAGUCHI-SHINOZAKI K, et al. Cytokinins: metabolism and function in plant adaptation to environmental stresses [J]. Trends Plant Science,2012,17:172-179.
[33]王泳超,郑博元,顾万荣,等. γ-氨基丁酸对盐胁迫下玉米幼苗根系氧化损伤及内源激素的调控[J]. 农药学学报,2018,20(5):607-617.
[34]高洪波,李敬蕊,章铁军,等. 甘氨酸和谷氨酸与钼配施对生菜品质的影响 [J]. 西北植物学报,2010,30(5):968-973.
[35]付蓉. γ-氨基丁酸对作物幼苗生长发育的影响 [D]. 南京:南京农业大学,2012.
[36]张换换,白明月,夏秀英. γ-氨基丁酸对玻璃化胁迫下越橘试管苗生长及生理代谢的影响 [J]. 植物生理学报,2021,57(3):623-632.
[37]弓瑞娟,卢凤刚,夏庆平,等. γ-氨基丁酸对生菜硝酸盐含量和营养品质的影响 [J]. 河北农业大学学报,2012,35(3):31-35.
[38]李敬蕊,王祥,田真,等. 外源喷施不同浓度γ-氨基丁酸对韭菜生长及氮代谢的影响 [J]. 浙江农业学报,2015,27(9):1563-1568.
[39]田真,李敬蕊,王祥,等. 生菜硝酸还原酶基因的克隆及高氮水平下外源γ-氨基丁酸对其表达和叶片硝酸盐含量的影响 [J]. 西北植物学报,2015,35(6):1098-1105.
[40]姚小桐,张润芝,许宁,等. 不同品种芸薹属蔬菜中硫代葡萄糖苷含量的比较分析 [J]. 北方园艺,2018(21):30-36.
[41]林海鸣,郑晓鹤,周军,等. 硫代葡萄糖苷及异硫氰酸酯的抗癌和抗氧化作用进展 [J]. 中国现代应用药学,2015,32(4):520-528.
[42]周芷亦. GABA联合NaCl调控西兰花芽苗叶黄素积累的研究 [D]. 哈尔滨:东北林业大学,2021.
[43]何锐,谭星,高美芳,等. 添加不同浓度海藻肥对水培芥蓝生长及品质的影响 [J]. 植物营养与肥料学报,2020,26(11):2051-2059.
[44]SOK-ETOWSKA A, OSZMIANSKI J, WOJDYEO A. Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap [J]. Food Chemistry,2007,103(3):853-859.
[45]THIRUVENGADAM M, KIM S H, CHUNG L M. Influence of amphetamine, γ-aminobutyric acid, and fosmidomycin on metabolic, transcriptional variations and determination of their biological activities in turnip (Brassica rapa ssp. rapa) [J]. South African Journal of Botany,2016,103:181-192.
[46]JI J, SHI Z, XIE T T, et al. Responses of GABA shunt coupled with carbon and nitrogen metabolism in poplar under NaCl and CdCl2 stresses [J]. Ecotoxicology and Environmental Safety,2020,193:110322.
[47]王贺. 外源GABA对盐胁迫下西伯利亚白刺多胺,脯氨酸代谢和GABA支路的调控作用 [D]. 哈尔滨:东北农业大学,2021.

相似文献/References:

[1]薛生玲,江敏,常嘉琪,等.芥蓝牻牛儿基牻牛儿基焦磷酸合成酶基因BoaGGPPS1的克隆及表达分析[J].江苏农业学报,2018,(02):259.[doi:doi:10.3969/j.issn.1000-4440.2018.02.004]
 XUE Sheng-ling,JIANG Min,CHANG Jia-qi,et al.Cloning and expression analysis of geranylgeranyl pyrophosphate synthase gene(BoaGGPPS1) in Brassica oleracea var. alboglabra[J].,2018,(09):259.[doi:doi:10.3969/j.issn.1000-4440.2018.02.004]

备注/Memo

备注/Memo:
收稿日期:2022-10-31基金项目:甘肃省农业科技创新项目(GNCX-2013-37);甘肃省引导科技创新发展专项(2018ZX-02);甘肃农业大学盛彤笙创新基金项目(GSAU-STS-2021-29)作者简介:刘阳(1997-),女,云南曲靖人,硕士研究生,主要从事设施蔬菜栽培与生长调控研究。(E-mail)3219595227@qq.com通讯作者:颉建明,(E-mail)xiejianminggs@126.com
更新日期/Last Update: 2024-01-15