[1]张善文,许新华,齐国红.基于孪生多尺度空洞胶囊网络的黄瓜叶部病害检测方法[J].江苏农业学报,2023,(09):1827-1833.[doi:doi:10.3969/j.issn.1000-4440.2023.09.004]
 ZHANG Shan-wen,XU Xin-hua,QI Guo-hong.Cucumber leaf disease detection based on Siamese multi-scale dilated capsule network[J].,2023,(09):1827-1833.[doi:doi:10.3969/j.issn.1000-4440.2023.09.004]
点击复制

基于孪生多尺度空洞胶囊网络的黄瓜叶部病害检测方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年09期
页码:
1827-1833
栏目:
植物保护
出版日期:
2023-12-31

文章信息/Info

Title:
Cucumber leaf disease detection based on Siamese multi-scale dilated capsule network
作者:
张善文许新华齐国红
(郑州西亚斯学院电子信息工程学院,河南郑州451150)
Author(s):
ZHANG Shan-wenXU Xin-huaQI Guo-hong
(School of Electronics Information Engineering, Zhengzhou SIAS University, Zhengzhou 451150, China)
关键词:
黄瓜病害孪生网络多尺度空洞卷积胶囊网络孪生多尺度空洞胶囊网络
Keywords:
cucumber diseaseSiamese networkmulti-scale dilated convolutioncapsule networkSiamese multi-scale dilated capsule network (SMSDCNet)
分类号:
TP391.41;S642.2
DOI:
doi:10.3969/j.issn.1000-4440.2023.09.004
文献标志码:
A
摘要:
在黄瓜叶部病害检测中,传统方法简单但检测正确率低,难以处理多种多样的病害叶片图像,深度卷积网络的检测正确率高,但依赖于大量训练样本,训练时间长。本研究提出一种基于孪生多尺度空洞胶囊网络(Siamese multi-scale dilated capsule network, SMSDCNet)的黄瓜叶部病害检测方法,该方法整合了孪生网络、空洞卷积网络和胶囊网络的优势,将多尺度空洞卷积模块Inception引入胶囊网络,作为孪生网络的子网络,构建孪生多尺度空洞胶囊网络模型,提取多尺度判别特征,再进行矢量化处理,最后经动态路由算法得到具有空间位置信息的胶囊向量,进行病害检测与识别。SMSDCNet克服了深度卷积网络需要大量训练样本、训练时间长以及对旋转和仿射变换敏感的问题,并且克服了多尺度卷积网络训练参数较多的问题。在一个较小的黄瓜病害叶片图像数据集上进行试验,病害检测精度达90%以上。结果表明,该方法能够实现小训练样本集的黄瓜叶部病害检测,为训练样本有限情况下的作物病害检测提供了一种新方法。
Abstract:
In cucumber leaf disease detection, the traditional methods are simple but low detection accuracy, and they are difficult to deal with the various diseased leaf images. Deep convolution neural networks (CNNs) have high detection accuracy, but they rely on a large number of training samples, and the training time is long. A cucumber leaf disease detection method based on Siamese multi-scale dilated capsule network (SMSDCNet) was proposed. It integrated the advantages of Siamese network, dilated convolution network and capsule network (CapsNet). In SMSDCNet, the multi-scale dilated convolution inception module was introduced into CapsNet to construct the two sub-networks for Siamese multi-scale dilated capsule network model, then the multi-scale discriminant features were extracted and vectorized. Finally, the capsule vector with spatial location information was obtained through the dynamic routing algorithm for detecting and recognizing cucumber leaf diseases. SMSDCNet overcame the problems of deep convolutional networks that required a large number of training samples, long training time, and sensitivity to rotation and affine transformation, and overcame the problem that multi-scale convolutional networks required more training parameters. Disease detection experiments were conducted on a small cucumber disease leaf image dataset. The detection accuracy was more than 90%. The results showed that the proposed method could detect cucumber leaf disease with small training sample set, which provided a new method for disease detection under the condition of limited training samples.

参考文献/References:

[1]刁智华,袁万宾,刁春迎,等. 病害特征在作物病害识别中的应用研究综述[J]. 江苏农业科学,2019,47(5):71-74.
[2]FERNNDEZ C I, LEBLON B, WANG J, et al. Cucumber powdery mildew detection using hyperspectral data[J]. Canadian Journal of Plant Science,2022,102(1):20-32.
[3]SHEN W Z, GUAN Y, WANG Y, et al. Research on rice leaf disease recognition based on BP neural network[J]. Journal of Northeast Agricultural University (English Edition),2019,26(3):75-86.
[4]LIN K, GONG L, HUANG Y, et al. Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network[J]. Frontiers in Plant Science,2019. DOI:10.3389/fpls.2019.00155.
[5]KAUR S, PANDEY S, GOEL S. Plants disease identification and classification through leaf images: a survey[J]. Archives of Computational Methods in Engineering,2019,26(2):507-530.
[6]邵明月,张建华,冯全,等. 深度学习在植物叶部病害检测与识别的研究进展[J]. 智慧农业(中英文),2022,4(1):29-46.
[7]NGUGI L C, ABELWAHAB M, ABO-ZAHHAD M. Recent advances in image processing techniques for automated leaf pest and disease recognition-a review[J]. Information Processing in Agriculture,2021,8(1):27-51.
[8]岳有军,李雪松,赵辉,等. 基于改进VGG网络的农作物病害图像识别[J]. 农机化研究,2022,44(6):18-24.
[9]YU H, CHENG X, LI Z, et al. Disease recognition of apple leaf using lightweight multi-scale network with ECANet[J]. Computer Modeling in Engineering & Sciences,2022,132(3):711-738.
[10]何欣,李书琴,刘斌. 基于多尺度残差神经网络的葡萄叶片病害识别[J]. 计算机工程,2021,47(5):285-291,300.
[11]CHEN J, WANG W, ZHANG D, et al. Attention embedded lightweight network for maize disease recognition[J]. Plant Pathology,2021,70(3):630-642.
[12]THAKUR P S, SHEOREY T, OJHA A. VGG-ICNN: a lightweight CNN model for crop disease identification[J]. Multimedia Tools and Applications,2023,82:497-520.
[13]孟亮,郭小燕,杜佳举,等. 一种轻量级CNN农作物病害图像识别模型[J]. 江苏农业学报,2021,37(5):1143-1150.
[14]FAN X, LUO P, MU Y, et al. Leaf image based plant disease identification using transfer learning and feature fusion[J]. Computers and Electronics in Agriculture,2022,196. DOI: 10.1016/j.compag.2022.106892.
[15]AHMED K R. Smart pothole detection using deep learning based on dilated convolution[J]. Sensors,2021,21(24):8406.
[16]FANG Y, LI Y, TU X, et al. Face completion with hybrid dilated convolution[J]. Signal Processing: Image Communication,2020,80:115664.
[17]PAOLETTI M E, HAUT J M, FERNANDEZ-BELTRAN R, et al. Capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing,2019,57(4):2145-2160.
[18]JANAKIRAMAIAH B, KALYANI G, PRASAD L, et al. Intelligent system for leaf disease detection using capsule networks for horticulture[J]. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology,2021,41(6):6697-6713.
[19]钱心筠,王友仁,赵亚磊. 基于孪生网络的行星齿轮箱故障诊断方法[J]. 机械制造与自动化,2022,51(4):116-119.
[20]CHICCO D. Siamese neural networks: an overview [J]. Artificial Neural Networks,2020. DOI:10.1007/978-1-0716-0826-5_3.
[21]ZHOU S, ZHOU Y, LIU B. Using Siamese capsule networks for remote sensing scene classification[J]. Remote Sensing Letters,2020,11(8):757-766.
[22]鲍文霞,黄雪峰,胡根生,等. 基于改进卷积神经网络模型的玉米叶部病害识别[J]. 农业工程学报,2021,37(6):160-167.

备注/Memo

备注/Memo:
收稿日期:2022-11-12基金项目:国家自然科学基金项目(62172338);河南省科技厅科技攻关项目(222102110134);河南省高等学校重点科研项目(22B520049)作者简介:张善文(1965-),男,陕西西安人,博士,教授,主要从事人工智能在精准农业中的应用研究。(E-mail)wjdw716@163.com
更新日期/Last Update: 2024-01-15