[1]姜聖姬,王淑安,张恩亮,等.紫薇遗传图谱构建及株型性状的QTL定位[J].江苏农业学报,2023,(09):1818-1826.[doi:doi:10.3969/j.issn.1000-4440.2023.09.003]
 JIANG Sheng-ji,WANG Shu-an,ZHANG En-liang,et al.Construction of genetic linkage map and QTL mapping of plant architecture in Lagerstroemia indica[J].,2023,(09):1818-1826.[doi:doi:10.3969/j.issn.1000-4440.2023.09.003]
点击复制

紫薇遗传图谱构建及株型性状的QTL定位()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年09期
页码:
1818-1826
栏目:
遗传育种·生理生化
出版日期:
2023-12-31

文章信息/Info

Title:
Construction of genetic linkage map and QTL mapping of plant architecture in Lagerstroemia indica
作者:
姜聖姬王淑安张恩亮李林芳高露璐杨如同王鹏
(江苏省中国科学院植物研究所,江苏南京210014)
Author(s):
JIANG Sheng-jiWANG Shu-anZHANG En-liangLI Lin-fangGAO Lu-luYANG Ru-tongWANG Peng
(Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China)
关键词:
紫薇简单重复序列(SSR)标记遗传图谱株型数量性状座(QTL)定位
Keywords:
Lagerstroemia indicasimple sequence repeat (SSR) markersgenetic linkage mapplant architecturequantitative trait locus (QTL) mapping
分类号:
S685.99
DOI:
doi:10.3969/j.issn.1000-4440.2023.09.003
文献标志码:
A
摘要:
紫薇是中国重要的木本观花植物,株型是其重要的观赏性状,但是目前尚未见关于其株型数量性状基因座(QTL)定位的研究。以紫薇金幌、堇秀构建的181个F1代分离群体为研究材料,构建1张由36个连锁群组成的包含429个SSR标记位点的遗传连锁图谱,总遗传距离为1 998.81 cM,位点间平均距离为4.63 cM;LG1连锁群的遗传距离最大,为177.60 cM,LG27连锁群覆盖的遗传距离最小,为19.32 cM。基于区间作图法共检测到7个株型的QTL位点,其中控制株高的QTL位点有4个,解释4.32%~56.93%的表型变异;控制地径的QTL位点有2个,分别解释56.43%和59.02%的表型变异;控制分枝数的QTL位点有1个,解释54.60%的表型变异。本研究率先构建了基于功能分子标记的紫薇种内遗传连锁图谱,并定位了7个紫薇株型的QTL位点,可以解释4.32%~59.02%的表型变异。研究结果可为紫薇基因定位、基因克隆及分子标记辅助选择奠定基础。
Abstract:
Lagerstroemia indica is an important woody ornamental plant in China, and plant type is an important ornamental trait. However, the research on quantitative trait locus (QTL) mapping of plant type has not been reported. In this study, 181 F1 segregation populations of Jinhuang and Jinxiu were used as research materials, and a genetic linkage map consisting of 36 linkage groups and 429 SSR marker loci was constructed. The total genetic distance was 1 998.81 cM, and the average distance between loci was 4.63 cM. The genetic distance of LG1 linkage group was the largest, which was 177.60 cM, and the total genetic distance covered by LG27 linkage group was the smallest, which was 19.32 cM. Based on the interval mapping method, a total of seven QTLs for plant type were detected, including four QTLs for plant height, explaining 4.32%-56.93% of the phenotypic variation. There were two QTLs controlling ground diameter, explaining 56.43% and 59.02% of phenotypic variation. There was one QTL locus controlling the number of branches, explaining 54.60% of the phenotypic variation. In this study, an intraspecific genetic linkage map of L.indica based on functional molecular markers was first constructed, and seven QTLs of L.indica plant type were mapped, explaining 4.32%-59.02% of phenotypic variation. In conclusion, these results can lay a foundation for gene mapping, gene cloning and molecular marker-assisted selection of Lagerstroemia indica.

参考文献/References:

[1]万德诺,孙丙雁,纪玉杰. 紫薇属植物及其在园林中的应用[J]. 现代农业科技,2013(11):221-223.
[2]蒋锦雷. 观赏园艺植物遗传图谱中分子标记技术的研究进展[J]. 南方农机,2022,53(10):64-66.
[3]PELTIER D, FARCY E, DULIEU H, et al. Origin, distribution and mapping of RAPD markers from wild petunia species in Petunia hybrida Hort lines[J]. Theoretical and Applied Genetics,1994,88(6/7):637-645.
[4]张微微,潘俊松,蒋苏,等. 黄瓜RIL群体侧枝相关性状QTL定位[J]. 江苏农业学报,2017,33(1):174-180.
[5]陈丹维,赵凯歌,陈龙清. 利用AFLP和ISSR标记评价蜡梅种内杂交一代群体的分离方式[J]. 北京林业大学学报,2010,32(增刊2):166-170.
[6]CAI C F, CHENG F Y, WU J, et al. The first high-density genetic map construction in tree peony (Paeonia Sect. Moutan) using genotyping by specific-locus amplified fragment sequencing[J]. PLoS One,2015,10(5):e0128584.
[7]DARDICK C, CALLAHAN A, HORN R, et al. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species[J]. The Plant Journal,2013,75(4):618-630.
[8]LEE M, XIA J H, ZOU Z W, et al. A consensus linkage map of oil palm and a major QTL for stem height[J]. Scientific Reports,2015,5(1):1-7.
[9]LIU G Y, YANG Q S, GAO J F, et al. Identify of fast-growing related genes especially in height growth by combining QTL analysis and transcriptome in Salix matsudana (Koidz)[J]. Frontiers in Genetics,2021,12:596749.
[10]DU Q Z, GONG C R, WANG Q S, et al. Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies[J]. New Phytologist,2016,209(3):1067-1082.
[11]SOUZA L M, GAZAFFI R, MANTELLO C C, et al. QTL mapping of growth-related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate[J]. PLoS One,2013,8(4):e61238.
[12]冷嘉文,乔中全,唐丽,等. 基于SSR分子标记的紫薇遗传多样性分析[J]. 湖南生态科学学报,2021,8(4):1-7.
[13]CAI M, PAN H T, WANG X F, et al. Development of novel microsatellites in Lagerstroemia indica and DNA fingerprinting in Chinese Lagerstroemia cultivars[J]. Scientia Horticulturae,2011,131:88-94.
[14]贺丹,王晓娇,刘阳,等. 紫薇几个表型性状的QTLs定位[J]. 东北林业大学学报,2014,42(7):108-111.
[15]文自翔,赵团结,郑永战,等. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅰ. 群体结构及关联标记[J]. 作物学报,2008,34(7):1169-1178.
[16]张恩亮,王鹏,李亚,等. 紫薇EST-SSR标记的开发与利用[J]. 北方园艺,2016(22):107-111.
[17]左力辉,韩志校,梁海永,等. 不同产地中国李资源遗传多样性SSR分析[J]. 园艺学报,2015,42(1):111-118.
[18]MCCOUCH S R, CHEN X, PANAUD O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding[J]. Plant Molecular Biology,1997,35(1):89-99.
[19]SARIKA G, SASHI P R, SUCHI S, et al. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus[J]. Journal of Genetics,2007,86(3):259-268.
[20]LESPINASSE D, RODIER-GOUD M, GRIVET L, et al. A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers[J]. Theoretical and Applied Genetic,2000,100:127-138.
[21]YAMAMOTO T, KIMURA T, SHODA M, et al. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears[J]. Theoretical and Applied Genetics,2002,106(1):9-18.
[22]FOOLAD M R, CHERT F Q, LIN G Y. RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato[J]. Theoretical and Applied Genetic,1998,97:1133-1144.
[23]董少玲,张颖慧,张亚东,等. 水稻重组自交系分子遗传图谱构建及分蘖角的QTL检测[J]. 江苏农业学报,2012,28(2):236-242.
[24]林忠旭,冯常辉,郭小平,等. 陆地棉产量、纤维品质相关性状主效QTL和上位性互作分析[J]. 中国农业科学,2009,42(9):3036-3047.
[25]ARANZANA M J, GARCIA-MAS J, CARB J, et al. Development and variability analysis of microsatellite markers in peach[J]. Plant Breeding, 2002, 121(1): 87-92.
[26]房经贵,章镇,马正强,等. AFLP标记在两个芒果品种间杂交F1代的多态性及分离方式[J]. 中国农业科学,2000,33(3):19-24.
[27]BRADSHAW JR H D, STETTLER R F. Molecular genetics of growth and development in populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree[J]. Genetics,1995,139(2):963-973.
[28]孔会利,刘文俊,王令强,等. 水稻株高QTL Qph1的精细定位[J]. 华中农业大学学报,2012,31(3):265-269.
[29]唐世义. 陆地棉优质品种纤维品质性状QTL定位[D]. 重庆:西南大学,2014.
[30]SHI Y, BYRNE D H. Tolerance of Prunus rootstock to potassium carbonate-induced chlorosis[J]. Journal of the American Society for Horticultural Science,1995,120(2):283-285.
[31]甘四明,施季森,白嘉雨,等. RAPD标记在桉属种间杂交一代的分离方式研究[J]. 林业科学研究,2001,14(2):125-130.
[32]CARLSON J E, TULSERAM L K, GLAUBITZ J C, et al. Segregation of random amplified DNA markers in F1 progeny of conifers[J]. Theoretical and Applied Genetic,1991,83(83):194-200.
[33]MUKAI A, YAMAMOTO-HINO M, AWANO W, et al. Balanced ubiquitylation and deubiquitylation of frizzled regulate cellular responsiveness to Wg/Wnt[J]. The EMBO Journal,2010,80:S61.
[34]FAUR S, NOYER J L, HORRY J P, et al. A molecular marker-based linkage map of diploid bananas (Musa acuminata)[J]. Theoretical and Applied Genetics,1993,87(4):517-526.
[35]KASHA K J, KAO K N. High frequency haploid production in barley (Hordeum vulgare L.)[J]. Nature,1970,225:874-876.
[36]XU J R, STAIGER C J, HAMER J E, et al. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(21):12713-12718.
[37]HELENTJARIS T, SLOCUM M, WRIGHT S, et al. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms[J]. Theoretical and Applied Genetics,1986,72(6):761-769.
[38]KY C L, BARRE P, LORIEUX M, et al. Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.)[J]. Theoretical and Applied Genetic,2000,101(4):669-676.
[39]童汉华,梅捍卫,邢永忠,等. 水稻生育后期剑叶形态和生理特性的QTL定位[J]. 中国水稻科学,2007,21(5):493-499.
[40]吴儒刚,陈广凤,李冬梅,等. 盐胁迫下小麦幼苗相关性状QTL加性及其上位性效应分析[J]. 山东农业大学学报(自然科学版),2015,46(5):652-657.
[41]管延安. 甜高粱遗传图谱的构建及能源相关性状的QTL定位[D]. 泰安:山东农业大学,2011.
[42]张福敏. 响叶杨×银白杨遗传图谱加密与相关QTL定位[D]. 南京:南京林业大学,2011.
[43]叶生月,陈钢,张慧,等. 香榧ISSR-PCR扩增条件的优化和引物筛选[J]. 浙江林学院学报,2010,27(1):87-92.
[44]李小雷,于肖夏,于卓,等. 冰草10个主要农艺性状的QTL定位研究[J]. 麦类作物学报,2013,33(1):44-50.
[45]KENIS K, KEULEMANS J, DAVEY M W, et al. Identification and stability of QTLs for fruit quality traits in apple[J]. Tree Genetics and Genomes,2008,4(4):647-661.
[46]张校立,艾沙江·买买提,薛华柏,等. 梨遗传连锁图谱研究进展[J]. 果树学报,2018,35(增刊1):1-8.
[47]申涛,谭康,李春红,等. 玉米株型相关性状的QTL定位[J]. 分子植物育种,2022,20(1):155-162.
[48]张亚东,梁文化,赫磊,等. 水稻RIL群体高密度遗传图谱构建及粒型QTL定位[J]. 中国农业科学,2021,54(24):5163-5176.

相似文献/References:

[1]刘博,刘旭,谭军,等.苏北地区紫薇绒蚧生活史及防治方法[J].江苏农业学报,2017,(05):1022.[doi:doi:10.3969/j.issn.1000-4440.2017.05.010]
 LIU Bo,LIU Xu,TAN Jun,et al.Life cycle and the control of Eriococcus lagerstroemiae in northern Jiangsu[J].,2017,(09):1022.[doi:doi:10.3969/j.issn.1000-4440.2017.05.010]
[2]乔东亚,王鹏,王淑安,等.紫薇金叶品种金幌叶色变化响应高光照的生理特性[J].江苏农业学报,2020,(01):180.[doi:doi:10.3969/j.issn.1000-4440.2020.01.025]
 QIAO Dong-ya,WANG Peng,WANG Shu-an,et al.Response of physiological characteristics of leaf color changing to high light in Lagerstroemia indica Jinhuang[J].,2020,(09):180.[doi:doi:10.3969/j.issn.1000-4440.2020.01.025]

备注/Memo

备注/Memo:
收稿日期:2022-12-02基金项目:中央财政林业科技推广示范资金项目[苏(2021)TG07];国家自然科学基金面上项目(31770745)作者简介:姜聖姬(1996-),女,辽宁东港人,硕士研究生,主要从事植物遗传学研究。(E-mail)15295776171@163.com。王淑安为共同第一作者。通讯作者:王鹏,(E-mail)wp280018@163.com
更新日期/Last Update: 2024-01-15