[1]郭金成,曹新川,宋佳,等.基于加性-显性-上位性(ADAA)模型与主-多基因模型的陆地棉产量与品质性状的遗传分析[J].江苏农业学报,2023,(09):1793-1803.[doi:doi:10.3969/j.issn.1000-4440.2023.09.001]
 GUO Jin-cheng,CAO Xin-chuan,SONG Jia,et al.Genetic analysis of yield and quality traits of upland cotton based on ADAA and major-polygene models[J].,2023,(09):1793-1803.[doi:doi:10.3969/j.issn.1000-4440.2023.09.001]
点击复制

基于加性-显性-上位性(ADAA)模型与主-多基因模型的陆地棉产量与品质性状的遗传分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年09期
页码:
1793-1803
栏目:
遗传育种·生理生化
出版日期:
2023-12-31

文章信息/Info

Title:
Genetic analysis of yield and quality traits of upland cotton based on ADAA and major-polygene models
作者:
郭金成曹新川宋佳赵玉玲何良荣
(塔里木大学农学院,新疆阿拉尔843300)
Author(s):
GUO Jin-chengCAO Xin-chuanSONG JiaZHAO Yu-lingHE Liang-rong
(College of Agronomy, Tarim University, Alar 843300, China)
关键词:
陆地棉(Gossypium hirsutum L.)ADAA模型主基因-多基因遗传分析
Keywords:
upland cotton (Gossypium hirsutum L.)ADAA modelmajor gene-polygenegenetic analysis
分类号:
S562
DOI:
doi:10.3969/j.issn.1000-4440.2023.09.001
文献标志码:
A
摘要:
本试验为进一步明确陆地棉(Gossypium hirsutum L.)杂交后代产量、纤维品质性状的遗传规律,以9个陆地棉品种为亲本设计不完全双列杂交(NCⅡ)。对2019-2021年的亲本、18个F1和F2组合及组合TH14-22×B7的127个F2单株分别采用加性-显性-上位性(ADAA)模型与主基因-多基因遗传模型,从基因整体与个体水平进行分析。NCⅡ分析结果表明:所有性状均存在基因型与环境的互作,主要通过显性×环境来体现,上位性×环境不可忽视。多数性状的遗传以加性效应为主,整齐度以显性效应为主,伸长率无显著的基因主效应。上半部平均长度与整齐度具有正向平均优势,其他性状无明显的平均优势。分离分析结果表明:各性状普遍受主基因控制。单株铃数、衣分与比强度的最适遗传模型为2MG-EA,单铃质量与上半部平均长度最适遗传模型为2MG-A,整齐度与马克隆值最适遗传模型为2MG-AD,伸长率最适遗传模型为1MG-AD。单铃质量、衣分、上半部平均长度、整齐度与比强度主基因遗传率较高,单株铃数、马克隆值与伸长率的遗传率较低。ADAA模型分析结果与主基因-多基因分析结果的相互补充,可有效了解各性状的遗传特征,为采用适当的育种改良策略提供参考。
Abstract:
In order to further understand the genetic law of yield and fiber quality traits of hybrid progenies of upland cotton (Gossypium hirsutum L.), incomplete diallel cross (NCⅡ) was designed with nine upland cotton varieties as parents. Parents,18 F1 and F2 combinations and 127 F2 individuals from TH14-22 × B7 from 2019 to 2021 were analyzed by using additive-dominance-epistasis (ADAA) model and major gene-polygene genetic model from the whole gene level and individual level. The results of NCⅡ analysis showed that genotype-environment interaction existed in all traits, which was mainly reflected by dominance × environment. Epistasis × environment could not be ignored. The inheritance of most traits was dominated by additive effect, while the regularity was dominated by dominant effect. The elongation had no significant gene main effect. The average length and uniformity of the upper half had a positive average advantage, while the other traits had no obvious average advantage. The results of segregation analysis showed that all traits were generally controlled by major genes. The optimal genetic model for boll number per plant, lint percentage and specific strength was 2MG-EA, for boll weight and average length of upper half was 2MG-A, for uniformity and micronaire value was 2MG-AD, for elongation was 1MG-AD. The major gene heritability of boll weight, lint percentage, average length of upper half, uniformity and specific strength was higher, but the major gene heritability of boll number per plant, micronaire value and elongation was lower. The complementary results of ADAA model and major gene-polygene genetic model can effectively understand the genetic characteristics of the traits and provide a reference for the adoption of appropriate breeding improvement strategies.

参考文献/References:

[1]王健,董俊哲,陈浩,等. 全球棉花进出口贸易分析及展望[J]. 棉纺织技术,2018,46(3):81-84.
[2]FANG L, WANG Q, HU Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits[J]. Nature Genetics,2017,49:1089-1098.
[3]ROY U, PALOTI M, TIGGA A, et al. Genetic variability studies in the F2 populations of interspecific cotton(G. hirsutum L.×G. barbadense L.) hybrids[J]. International Journal of Genetics,2019,11:660-663.
[4]秦鸿德,冯常辉,张友昌,等. 基于部分NCⅡ设计的陆地棉F1表现预测[J]. 中国农业科学,2021,54(8):1590-1600.
[5]LI B T, SHI Y Z, GONG J W, et al. Genetic effects and heterosis of yield and yield component traits based on Gossypium barbadense chromosome segment substitution lines in two Gossypium hirsutum backgrounds[J]. PLoS One,2016,11:e0157978.
[6]金骏培,武耀廷,张天真. 皖杂40杂交棉产量与品质性状的杂种优势表现及遗传分析[J]. 中国农业科学,2004,37(10):1428-1433.
[7]詹有俊,杨涛,孙建船,等. 特早熟陆地棉的遗传效应及杂种优势分析[J]. 农业现代化研究,2012,33(4):493-497.
[8]成磊,梅拥军,郭伟锋,等. 中熟×早熟陆地棉F1产量及形态性状的遗传分析[J]. 安徽农业科学,2008,36(15):6249-6251,6260.
[9]杨六六,刘惠民,曹美莲,等. 棉花产量和纤维品质性状的遗传研究[J]. 棉花学报,2009,21(3):179-183.
[10]JENKINS J N,WU J,MCCARTY J C,et al. Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with upland cotton cultivars:II. fiber quality traits[J].Crop Science,2006,46:1169-1178.
[11]郑巨云,王俊铎,艾先涛,等. 陆地棉产量与纤维品质性状的遗传相关分析[J]. 新疆农业科学,2013,50(6):995-1002.
[12]代勇强,张新宇,孙杰. 北疆棉花三系主要选育指标的遗传效应分析[J]. 新疆农业科学,2017,54(1):1-9.
[13]JENKINS J N, MCCARTY J C, WU J X, et al. Genetic variance components and genetic effects among eleven diverse upland cotton lines and their F2 hybrids[J]. Euphytica,2009,167:397-408.
[14]努斯热提·吾斯曼,喻树迅,范术丽,等. 陆地棉机采性状对皮棉产量的遗传贡献分析[J]. 棉花学报,2012,24(1):10-17.
[15]盖钧镒,章元明,王建康. 植物数量性状遗传体系[M]. 北京:科学出版社,2003.
[16]龚举武,刘爱英,李俊文,等. 陆地棉衣分性状的主基因-多基因遗传分析[J]. 棉花学报,2019,31(3):192-200.
[17]狄佳春,陈旭升,赵亮,等. 利用主基因+多基因混合遗传分析解析陆地棉铃重与铃壳率杂种优势的遗传基础[J]. 棉花学报,2016,28(2):115-121.
[18]李成奇,李玉青,王清连,等. 不同生态环境下陆地棉生育期及产量性状的遗传研究[J]. 华北农学报,2011,26(1):140-145.
[19]马雪霞,丁业掌,蒋峰,等. 亚洲棉纤维品质和产量性状的主基因与多基因遗传分析[J]. 植物遗传资源学报,2008,9(2):212-217.
[20]李成奇,郭旺珍,马晓玲,等. 陆地棉衣分差异群体产量及产量构成因素的QTL标记和定位[J]. 棉花学报,2008,20(3):163-169.
[21]ZHU J. Mixed model approaches for estimating genetic variances and covariances[J]. International Journal of Biomathematics,1992,7:1-11.
[22]朱军. 遗传模型分析方法[M]. 北京:中国农业出版社,1997.
[23]盖钧镒. 植物数量性状遗传体系的分离分析方法研究[J]. 遗传,2005,27(1):130-136.
[24]王建康,盖钧镒. 利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J]. 遗传学报,1997,24(5):432-440.
[25]王靖天,张亚雯,杜应雯,等. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报,2022,48(6):1416-1424.
[26]张先亮,高俊山,宋国立,等. 陆地棉中G6主要性状主效和上位性QTL分析[J]. 分子植物育种,2009,7(2):312-320.
[27]林忠旭,冯常辉,郭小平,等. 陆地棉产量、纤维品质相关性状主效QTL和上位性互作分析[J]. 中国农业科学,2009,42(9):3036-3047.
[28]WADE M J. A gene’s eye view of epistasis,selection and speciation[J]. Journal of Evolutionary Biology,2002,15:337-346.
[29]汤飞宇,王晓芳,莫旺成,等. 陆地棉棉铃与纤维品质性状的遗传协方差分析[J]. 核农学报,2013,27(9):1285-1292.
[30]王保勤,刘书梅,李宾,等. 棉花永久F2群体纤维品质性状的遗传分析[J]. 湖北农业科学,2016,55(22):5758-5760.
[31]李春森. 陆地棉品质性状遗传效应分析[J]. 新疆农垦科技,2013,36(9):3-4.
[32]石玉真,刘爱英,李俊文,等. 陆海种间杂交纤维品质性状的遗传及其F1群体优势分析[J]. 棉花学报,2008,20(1):56-61.
[33]刘杰,曹新川,胡守林,等. 陆地棉品质性状的遗传模型分析[J]. 新疆农业科学,2015,52(7):1195-1199.
[34]詹有俊,杨涛,孙建船,等. 特早熟陆地棉熟性产量品质的遗传相关分析[J]. 农业现代化研究,2013,34(1):118-121.
[35]孔广超,秦利,徐海明,等. 棉花F2群体构建及其在纤维品质遗传和杂种优势研究中的应用[J]. 作物学报,2010,36(6):940-944.
[36]梅拥军,张改生,叶子弘,等. 海岛棉不同果枝品种间杂交产量性状的遗传及F1和F2群体优势分析[J]. 作物学报,2004,30(10):1026-1030.
[37]邢朝柱,靖深蓉,邢以华. 中国棉花杂种优势利用研究回顾和展望[J]. 棉花学报,2007,19(5):337-345.
[38]裴小雨,刘艳改,周晓箭,等. 陆地棉杂交组合F1、F2竞争优势研究[J]. 中国棉花,2021,48(1):16-19,41.
[39]邢朝柱,喻树迅,郭立平,等. 不同生态环境下陆地棉转基因抗虫杂交棉遗传效应及杂种优势分析[J]. 中国农业科学,2007,40(5):1056-1063.
[40]JONES D F. Dominance of linked factors as a means of accounting for heterosis[J]. Proceedings of the National Academy of Sciences,1917,3:310-312.
[41]YUAN Y L, ZHANG T Z, GUO Z W, et al. Major-polygene effect analysis of super quality fiber properties in upland cotton(G. hirsutum L.)[J]. Acta Genetica Sinica,2002,29:827-834.
[42]李成奇,郭旺珍,张天真. 衣分不同陆地棉品种的产量及产量构成因素的遗传分析[J]. 作物学报,2009,35(11):1990-1999.
[43]殷剑美,武耀廷,朱协飞,等. 陆地棉产量与品质性状的主基因与多基因遗传分析[J]. 棉花学报,2003,15(2):67-72.
[44]龚举武,刘爱英,段丽,等. 不同环境下‘中棉所70’RIL群体棉铃重的主基因+多基因遗传分析[J]. 中国农学通报,2019,35(15):128-137.
[45]王淑芳,石玉真,刘爱英,等. 陆地棉纤维品质性状主基因与多基因混合遗传分析[J]. 中国农学通报,2006,22(2):157-161.
[46]艾先涛,李雪源,王俊铎,等. 新疆高品质陆地棉纤维品质性状遗传分析研究[J]. 棉花学报,2009,21(2):107-114.

备注/Memo

备注/Memo:
收稿日期:2022-12-09基金项目:国家自然科学基金项目(31550010);华中农业大学-塔里木大学科研联合基金项目(HNLH202007)作者简介:郭金成(1999-),男,甘肃定西人,硕士研究生,研究方向为陆地棉遗传育种。(E-mail)526097667@qq.com通讯作者:何良荣,(E-mail)hlrzky@163.com
更新日期/Last Update: 2024-01-15