参考文献/References:
[1]ZHU M, LIU Z, ZENG Y, et al. Nordihydroguaiaretic acid reduces postharvest berry abscission in grapes[J]. Postharvest Biology and Technology,2022,183:111748.
[2]BALTAZAR A R, SANTOS F N, MOREIRA A P, et al. Smarter robotic sprayer system for precision agriculture[J]. Electronics,2021,10(17):2061.
[3]胡玲艳,周婷,刘艳,等. 基于轻量级网络自适应特征提取的番茄病害识别[J]. 江苏农业学报,2022,38(3):696-705.
[4]MALLIKARJUNA S B, SHIVAKUMARA P, KHARE V, et al. Multi-gradient-direction based deep learning model for arecanut disease identification[J]. CAAI Transactions on Intelligence Technology,2022,7(2):156-166.
[5]赵恒谦,杨屹峰,刘泽龙,等. 农作物叶片病害迁移学习分步识别方法[J]. 测绘通报,2021(7):34-38.
[6]YANG J, ZHANG T, FANG C, et al. A defencing algorithm based on deep learning improves the detection accuracy of caged chickens [J]. Computers and Electronics in Agriculture,2023,204:107501.
[7]李科岑,王晓强,林浩,等. 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索,2022,16(1):41-58.
[8]翟先一,魏鸿磊,韩美奇,等. 基于改进YOLO卷积神经网络的水下海参检测[J]. 江苏农业学报,2023,39(7):1543-1553.
[9]DAI G, FAN J, DEWI C. ITF-WPI: Image and text based cross-modal feature fusion model for wolfberry pest recognition[J]. Computers and Electronics in Agriculture,2023,212:108129.
[10]SHE J, ZHAN W, HONG S, et al. A method for automatic real-time detection and counting of fruit fly pests in orchards by trap bottles via convolutional neural network with attention mechanism added[J]. Ecological Informatics,2022,70:101690.
[11]CHEN X, CHENG Z, WANG S, et al. Atrial fibrillation detection based on multi-feature extraction and convolutional neural network for processing ECG signals[J]. Computer Methods and Programs in Biomedicine,2021,202:106009.
[12]TSALERA E, PAPADAKIS A, SAMARAKOU M, et al. Feature extraction with handcrafted methods and convolutional neural networks for facial emotion recognition[J]. Applied Sciences,2022,12(17):8455.
[13]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. IEEE:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[14]李颀,杨军. 基于多分辨率特征融合的葡萄尺寸检测[J].江苏农业学报,2022,38(2):394-402.
[15]SAEED A, ABDEL-AZIZ A A, MOSSAD A, et al. Smart detection of tomato leaf diseases using transfer learning-based convolutional neural networks[J]. Agriculture,2023,13(1): 139.
[16]KOK Z H, MOHAMED S A R, ALFATNI M S M, et al. Support vector machine in precision agriculture: a review[J]. Computers and Electronics in Agriculture,2021,191:106546.
[17]WANG G, ZHENG H, LI X. ResNeXt-SVM: a novel strawberry appearance quality identification method based on ResNeXt network and support vector machine[J]. Journal of Food Measurement and Characterization,2023,17(5):4345-4356.
[18]BAL F, KAYAALP F. A novel deep learning-based hybrid method for the determination of productivity of agricultural products: Apple case study[J]. IEEE Access,2023,11:7808-7821.
[19]LIU B, TAN C, LI S, et al. A data augmentation method based on generative adversarial networks for grape leaf disease identification[J]. IEEE Access,2020,8:102188-102198.
[20]AL-WESABI F N, ALBRAIKAN A A, HILAL A M, et al. Artificial intelligence enabled apple leaf disease classification for precision agriculture[J]. Cmc-Computers Materials & Continua,2022,70(3):6223-6238.
[21]李颀,陈哲豪. 基于改进单次多目标检测器的果面缺陷冬枣实时检测[J]. 江苏农业学报,2022,38(1):119-128.
[22]LI L, QIAO J, YAO J, et al. Automatic freezing-tolerant rapeseed material recognition using UAV images and deep learning[J]. Plant Methods,2022,18:5.
[23]KARTHIKEYAN M, RAJA D. Deep transfer learning enabled DenseNet model for content based image retrieval in agricultural plant disease images[J]. Multimedia Tools and Applications, 2023,82:36067-36090.
[24]LI K, WANG J, JALIL H, et al. A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5[J]. Computers and Electronics in Agriculture,2023,204:107534.
[25]SINGH P, SINGH P, FAROOQ U, et al. CottonLeafNet: cotton plant leaf disease detection using deep neural networks[J]. Multimedia Tools and Applications,2023,82:37151-37176.
[26]QIAN S, DU J, ZHOU J, et al. An effective pest detection method with automatic data augmentation strategy in the agricultural field[J]. Signal, Image and Video Processing,2023,17(2):563-571.
[27]NAN Y, ZHANG H, ZENG Y, et al. Faster and accurate green pepper detection using NSGA-II-based pruned YOLOv5l in the field environment[J]. Computers and Electronics in Agriculture,2023,205:107563.
[28]KHALIFA N E, LOEY M, MIRJALILI S. A comprehensive survey of recent trends in deep learning for digital images augmentation[J]. Artificial Intelligence Review, 2022,55:2352-2377.
[29]BUSLAEV A, IGLOVIKOV V I, KHVEDCHENYA E, et al. Albumentations: fast and flexible image augmentations[J]. Information,2020,11(2):125.
[30]WENG Z, MENG F, LIU S, et al. Cattle face recognition based on a Two-Branch convolutional neural network[J]. Computers and Electronics in Agriculture,2022,196:106871.
[31]DAI G, HU L, FAN J, et al. A deep learning-based object detection scheme by improving yolov5 for sprouted potatoes datasets[J]. IEEE Access,2022,10:85416-85428.
[32]储鑫,李祥,罗斌,等. 基于改进YOLOv4算法的番茄叶部病害识别方法[J]. 江苏农业学报,2023,39(5):1199-1208.
[33]DAI G, HU L, FAN J. Da-actnn-yolov5: hybrid yolo v5 model with data augmentation and activation of compression mechanism for potato disease identification[J]. Computational Intelligence and Neuroscience,2022,2022:1-16.
[34]阮子行,黄勇,王梦,等. 基于改进卷积神经网络的番茄品质分级方法[J]. 江苏农业学报,2023,39(4):1005-1014.
[35]KOC M, SUT S K, SERHATLIOGLU I, et al. Automatic prostate cancer detection model based on ensemble VGGNet feature generation and NCA feature selection using magnetic resonance images[J]. Multimedia Tools and Applications,2022,81(5):7125-7144.
[36]TAO T, WEI X. A hybrid CNN-SVM classifier for weed recognition in winter rape field[J]. Plant Methods,2022,18(1):29.
[37]ZENONE T, VITALE L, FAMULARI D, et al. Application of machine learning techniques to simulate the evaporative fraction and its relationship with environmental variables in corn crops[J]. Ecological Processes,2022,11(1):758-771.
相似文献/References:
[1]单捷,邱琳,孙玲,等.基于Radarsat-2的水稻种植面积提取[J].江苏农业学报,2017,(03):561.[doi:doi:10.3969/j.issn.1000-4440.2017.03.012]
SHAN Jie,QIU Lin,SUN Ling,et al.Paddy rice planting area extraction based on Radarsat-2 data[J].,2017,(08):561.[doi:doi:10.3969/j.issn.1000-4440.2017.03.012]
[2]苗荣慧,黄锋华,杨华,等.基于空谱一体化的农田高光谱图像分类[J].江苏农业学报,2018,(04):818.[doi:doi:10.3969/j.issn.1000-4440.2018.04.015]
MIAO Rong-hui,HUANG Feng-hua,YANG hua,et al.Farmland classification of hyperspectral image based on spatial-spectral integration method[J].,2018,(08):818.[doi:doi:10.3969/j.issn.1000-4440.2018.04.015]
[3]孙玉婷,杨红云,王映龙,等.基于支持向量机的水稻叶面积测定[J].江苏农业学报,2018,(05):1027.[doi:doi:10.3969/j.issn.1000-4440.2018.05.009]
SUN Yu-ting,YANG Hong-yun,WANG Ying-long,et al.Determination of rice leaf area based on support vector machine[J].,2018,(08):1027.[doi:doi:10.3969/j.issn.1000-4440.2018.05.009]
[4]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(08):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[5]王新忠,卢青,张晓东,等.基于高光谱图像的黄瓜种子活力无损检测[J].江苏农业学报,2019,(05):1197.[doi:doi:10.3969/j.issn.1000-4440.2019.05.028]
WANG Xin-zhong,LU Qing,ZHANG Xiao-dong,et al.Non-destructive detection of cucumber seeds vigor based on hyperspectral imaging[J].,2019,(08):1197.[doi:doi:10.3969/j.issn.1000-4440.2019.05.028]
[6]孙晓明,陈小龙,余向阳,等.基于近红外光谱分析技术的水蜜桃产地溯源[J].江苏农业学报,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
SUN Xiao-ming,CHEN Xiao-long,YU Xiang-yang,et al.Traceability of honey peach origin using near infrared spectroscopy analysis techniques[J].,2020,(08):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
[7]江远东,李新国,杨涵.基于连续小波变换的表层土壤有机碳含量的高光谱估算[J].江苏农业学报,2023,(01):118.[doi:doi:10.3969/j.issn.1000-4440.2023.01.014]
JIANG Yuan-dong,LI Xin-guo,YANG Han.Hyperspectral estimation of organic carbon content in surface soils based on continuous wavelet transform[J].,2023,(08):118.[doi:doi:10.3969/j.issn.1000-4440.2023.01.014]
[8]杨浩,张通,阳苇丽,等.基于图像处理的雪茄烟叶晾制期间含水率预测模型比较[J].江苏农业学报,2023,(09):1891.[doi:doi:10.3969/j.issn.1000-4440.2023.09.011]
YANG Hao,ZHANG Tong,YANG Wei-li,et al.Comparison of prediction models for moisture content of cigar tobacco leaves during drying period based on image processing[J].,2023,(08):1891.[doi:doi:10.3969/j.issn.1000-4440.2023.09.011]
[9]于天祥,樊红.基于Sentinel-2多时相遥感影像的冬小麦种植面积监测[J].江苏农业学报,2024,(09):1653.[doi:doi:10.3969/j.issn.1000-4440.2024.09.009]
YU Tianxiang,FAN Hong.Remote sensing monitoring of winter wheat planting area based on multi-temporal Sentinel-2 imagery[J].,2024,(08):1653.[doi:doi:10.3969/j.issn.1000-4440.2024.09.009]