参考文献/References:
[1]杜培军. 城市遥感的研究动态与发展趋势:“城市遥感”专栏导读[J]. 地理与地理信息科学,2018,34(3):1-4.
[2]皮新宇,曾永年,贺城墙. 融合多源遥感数据的高分辨率城市植被覆盖度估算[J]. 遥感学报,2021,25(6):1216-1226.
[3]吉珍霞,侯青青,裴婷婷,等. 黄土高原植被物候对季节性干旱的敏感性响应[J]. 干旱区地理,2022,45(2):557-565.
[4]韩宝龙,束承继,蔡文博,等. 植被群落特征对城市生态系统服务的影响研究进展[J]. 生态学报,2021,41(24):9978-9989.
[5]ZENG L, WARDLOW B D, XIANG D, et al. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data[J]. Remote Sensing of Environment,2019,237:111511.
[6]TEMPL B, KOCH E, BOLMGREN K, et al. Pan european phenological database (PEP725): a single point of access for European data[J]. Journal of Neurosurgical Sciences,2018,62:1109-1113.
[7]MAYER A. Phenology and citizen science: Volunteers have documented seasonal events for more than a century, and scientific studies are benefiting from the data[J]. Bioscience,2010,60(3):172-175.
[8]竺可桢,宛敏渭. 物候学[M]. 长沙: 湖南教育出版社,1999.
[9]尹林江,周忠发,李韶慧,等. 基于无人机可见光影像对喀斯特地区植被信息提取与覆盖度研究[J]. 草地学报,2020,28(6):1664-1672.
[10]ZHANG X, FRIEDL M A, SCHAAF C B. Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements[J]. Journal of Geophysical Research Biogeosciences,2015,111(G4):367-375.
[11]项铭涛,卫炜,吴文斌. 植被物候参数遥感提取研究进展评述[J]. 中国农业信息,2018,30(1):55-66.
[12]邵亚婷,王卷乐,严欣荣. 蒙古国植被物候特征及其对地理要素的响应[J]. 地理研究,2021,40(11):3029-3045.
[13]ZHANG X. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data[J]. Remote Sensing of Environment,2015,156:457-472.
[14]元志辉,萨楚拉,银山. 基于MODIS植被指数的浑善达克沙地植被物候变化[J]. 中国环境科学,2021,41(11):5254-5263.
[15]王敏钰,罗毅,张正阳,等. 植被物候参数遥感提取与验证方法研究进展[J]. 遥感学报,2022,26(3):431-455.
[16]吴文斌,杨鹏,唐华俊,等. 基于NDVI数据的华北地区耕地物候空间格局[J]. 中国农业科学,2009,42(2):552-560.
[17]WHITE M A, THORNTON P E, RUNNING S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability[J]. Global Biogeochemical Cycles,1997, 11(2):217-234.
[18]BERRA E F, GAULTON R, BARR S. Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations[J]. Remote Sensing of Environment,2019,223:229-242.
[19]VRIELING A, MERONI M, DARVISHZADEH R, et al. Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island[J]. Remote Sensing of Environment,2018,215:517-529.
[20]WINGATE L. Interpreting canopy development and physiology using a European phenology camera network at flux sites[J]. Biogeosciences,2015,12(10):7979-8034.
[21]杨晓渊,马丽,张中华,等. 高寒草甸植物群落生长发育特征与气候因子的关系[J]. 生态学报,2021,41(9):3689-3700.
相似文献/References:
[1]于堃,单捷,王志明,等.无人机遥感技术在小尺度土地利用现状动态监测中的应用[J].江苏农业学报,2019,(04):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
YU Kun,SHAN Jie,WANG Zhi ming,et al.Land use status monitoring in small scale by unmanned aerial vehicles (UAVs) observations[J].,2019,(08):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
[2]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(08):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[3]张先洁,孙国祥,汪小旵,等.基于超像素特征向量的果树冠层分割方法[J].江苏农业学报,2021,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
ZHANG Xian-jie,SUN Guo-xiang,WANG Xiao-chan,et al.Segmentation method of fruit tree canopy based on super pixel feature vector[J].,2021,(08):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
[4]郭松,常庆瑞,郑智康,等.基于无人机高光谱影像的玉米叶绿素含量估测[J].江苏农业学报,2022,38(04):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
GUO Song,CHANG Qing-rui,ZHENG Zhi-kang,et al.Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images[J].,2022,38(08):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
[5]李瑞鑫,张宝林,潘丽杰,等.不同无人机飞行高度下玉米叶片叶绿素相对含量的无人机遥感反演及其指示叶位的识别[J].江苏农业学报,2024,(07):1234.[doi:doi:10.3969/j.issn.1000-4440.2024.07.010]
LI Ruixin,ZHANG Baolin,PAN Lijie,et al.Unmanned aerial vehicle remote sensing inversion of relative chlorophyll content of maize leaves and identification of their indicator leaf at different flight altitudes[J].,2024,(08):1234.[doi:doi:10.3969/j.issn.1000-4440.2024.07.010]