[1]龚志远,李雪梅,李秋萍,等.兰州植物园植被春季物候无人机监测[J].江苏农业学报,2023,(08):1707-1712.[doi:doi:10.3969/j.issn.1000-4440.2023.08.010]
 GONG Zhi-yuan,LI Xue-mei,LI Qiu-ping,et al.Unmanned aerial vehicle (UAV) monitoring of spring vegetation phenology in Lanzhou Botanical Garden[J].,2023,(08):1707-1712.[doi:doi:10.3969/j.issn.1000-4440.2023.08.010]
点击复制

兰州植物园植被春季物候无人机监测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年08期
页码:
1707-1712
栏目:
农业信息工程
出版日期:
2023-12-31

文章信息/Info

Title:
Unmanned aerial vehicle (UAV) monitoring of spring vegetation phenology in Lanzhou Botanical Garden
作者:
龚志远李雪梅李秋萍赵俊卓李帆帆
(兰州交通大学测绘与地理信息学院/甘肃省地理国情监测工程实验室/地理国情监测技术应用国家地方联合工程研究中心,甘肃兰州730070)
Author(s):
GONG Zhi-yuanLI Xue-meiLI Qiu-pingZHAO Jun-zhuoLI Fan-fan
(Faculty of Geomatics, Lanzhou Jiaotong University/Gansu Provincial Engineering Laboratory for National Geographic State Monitoring/National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China)
关键词:
植被物候无人机监测植被指数
Keywords:
vegetation phenologyunmanned aerial vehicle (UAV)monitoringvegetation index
分类号:
Q948.15
DOI:
doi:10.3969/j.issn.1000-4440.2023.08.010
文献标志码:
A
摘要:
针对卫星遥感影像难以准确提取局部地区植被物候的问题,本研究以兰州植物园草坪草、连翘、牡丹、黄刺玫和香荚蒾等5种植被为研究对象,基于多时相无人机影像,提出了一种局部地区植被春季物候期估算方法。首先利用无人机获取的多时相兰州植物园植被影像,分析各植被超绿指数(ExG)、超绿超红差分指数(ExGR)、绿叶指数(GLI)和植被因子指数(VEG)等植被指数的时序变化特征,并进行一元三次多项式拟合,使用导数法提取各植被的发芽期、开花期、结果期等春季物候期,然后与人工观测物候资料进行比较,明确不同植被指数下物候期的估算精度。结果表明:除草坪草的发芽期和结果期以及牡丹的发芽期,4种植被指数估算得到的物候期基本一致,但其和实际物候期均存在不同程度的误差;发芽期估算误差最大的是黄刺玫,平均提前27 d,最小的是香荚蒾,平均推迟8 d;开花期估算误差较大的是草坪草和牡丹,平均误差均在20 d以上,最小的是连翘和香荚蒾;结果期估算误差最大的是香荚蒾,平均提前35 d,最小的是牡丹,平均提前5 d。基于ExG指数估算的开花期和结果期与实际观测期一致性最好,均方根差分别为14.01 d和17.28 d,而VEG指数估算发芽期效果最好,均方根差为13.81 d。本研究基于无人机遥感影像数据筛选出植被春季物候期监测适宜的植被指标,对局部地区植被物候监测研究具有一定意义。
Abstract:
Aiming at the problem that satellite remote sensing images are difficult to accurately extract vegetation phenology in local areas, this study took five vegetations such as lawn grasses, Forsythia suspensa, peony, Rosa xanthina and Viburnum sargentii in Lanzhou Botanical Garden as the research objects. Based on multi-temporal unmanned aerial vehicle (UAV) images, a method for estimating spring phenology of vegetation in local areas was proposed. Firstly, the multi-temporal vegetation images of Lanzhou Botanical Garden obtained by UAV were used to analyze the temporal variation characteristics of vegetation indices such as excess green index (ExG), excess-green minus excess red index (ExGR), green leaf index (GLI) and vegetative index (VEG), and one-dimensional cubic fitting was performed. The derivative method was used to extract the spring phenological periods such as germination period, flowering period and fruiting period of each vegetation, and then compared with the artificial observation phenological data to clarify the estimation accuracy of phenological periods under different vegetation indices. The results showed that except for the germination and fruiting period of turfgrass and the germination period of peony, the phenological periods estimated by the four vegetation indices were basically the same, but there were different degrees of errors between them and the actual phenological periods. The largest estimation error of germination period was 27 days in advance for Rosa xanthina, and the smallest was Viburnum insignis, which was delayed by eight days. The error of flowering period estimation was larger in turfgrass and peony, and the average error was more than 20 days, and the smallest was Forsythia suspensa and Viburnum sargentii. The largest estimation error of fruiting period was Viburnum sargentii, with an average of 35 days in advance, and the smallest was peony, with an average of five days in advance. The flowering period and fruiting period estimated based on the ExG index had the best consistency with the actual observation period, and the root mean square errors were 14.01 d and 17.28 d, respectively. The VEG index had the best effect on estimating the germination period, and the root mean square error was 13.81 d. This study is based on UAV remote sensing image data to screen out suitable vegetation indicators for monitoring vegetation phenology in spring, which is of certain significance to the study of vegetation phenology monitoring in local areas.

参考文献/References:

[1]杜培军. 城市遥感的研究动态与发展趋势:“城市遥感”专栏导读[J]. 地理与地理信息科学,2018,34(3):1-4.
[2]皮新宇,曾永年,贺城墙. 融合多源遥感数据的高分辨率城市植被覆盖度估算[J]. 遥感学报,2021,25(6):1216-1226.
[3]吉珍霞,侯青青,裴婷婷,等. 黄土高原植被物候对季节性干旱的敏感性响应[J]. 干旱区地理,2022,45(2):557-565.
[4]韩宝龙,束承继,蔡文博,等. 植被群落特征对城市生态系统服务的影响研究进展[J]. 生态学报,2021,41(24):9978-9989.
[5]ZENG L, WARDLOW B D, XIANG D, et al. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data[J]. Remote Sensing of Environment,2019,237:111511.
[6]TEMPL B, KOCH E, BOLMGREN K, et al. Pan european phenological database (PEP725): a single point of access for European data[J]. Journal of Neurosurgical Sciences,2018,62:1109-1113.
[7]MAYER A. Phenology and citizen science: Volunteers have documented seasonal events for more than a century, and scientific studies are benefiting from the data[J]. Bioscience,2010,60(3):172-175.
[8]竺可桢,宛敏渭. 物候学[M]. 长沙: 湖南教育出版社,1999.
[9]尹林江,周忠发,李韶慧,等. 基于无人机可见光影像对喀斯特地区植被信息提取与覆盖度研究[J]. 草地学报,2020,28(6):1664-1672.
[10]ZHANG X, FRIEDL M A, SCHAAF C B. Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements[J]. Journal of Geophysical Research Biogeosciences,2015,111(G4):367-375.
[11]项铭涛,卫炜,吴文斌. 植被物候参数遥感提取研究进展评述[J]. 中国农业信息,2018,30(1):55-66.
[12]邵亚婷,王卷乐,严欣荣. 蒙古国植被物候特征及其对地理要素的响应[J]. 地理研究,2021,40(11):3029-3045.
[13]ZHANG X. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data[J]. Remote Sensing of Environment,2015,156:457-472.
[14]元志辉,萨楚拉,银山. 基于MODIS植被指数的浑善达克沙地植被物候变化[J]. 中国环境科学,2021,41(11):5254-5263.
[15]王敏钰,罗毅,张正阳,等. 植被物候参数遥感提取与验证方法研究进展[J]. 遥感学报,2022,26(3):431-455.
[16]吴文斌,杨鹏,唐华俊,等. 基于NDVI数据的华北地区耕地物候空间格局[J]. 中国农业科学,2009,42(2):552-560.
[17]WHITE M A, THORNTON P E, RUNNING S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability[J]. Global Biogeochemical Cycles,1997, 11(2):217-234.
[18]BERRA E F, GAULTON R, BARR S. Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations[J]. Remote Sensing of Environment,2019,223:229-242.
[19]VRIELING A, MERONI M, DARVISHZADEH R, et al. Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island[J]. Remote Sensing of Environment,2018,215:517-529.
[20]WINGATE L. Interpreting canopy development and physiology using a European phenology camera network at flux sites[J]. Biogeosciences,2015,12(10):7979-8034.
[21]杨晓渊,马丽,张中华,等. 高寒草甸植物群落生长发育特征与气候因子的关系[J]. 生态学报,2021,41(9):3689-3700.

相似文献/References:

[1]于堃,单捷,王志明,等.无人机遥感技术在小尺度土地利用现状动态监测中的应用[J].江苏农业学报,2019,(04):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
 YU Kun,SHAN Jie,WANG Zhi ming,et al.Land use status monitoring in small scale by unmanned aerial vehicles (UAVs) observations[J].,2019,(08):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
[2]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
 TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(08):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[3]张先洁,孙国祥,汪小旵,等.基于超像素特征向量的果树冠层分割方法[J].江苏农业学报,2021,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
 ZHANG Xian-jie,SUN Guo-xiang,WANG Xiao-chan,et al.Segmentation method of fruit tree canopy based on super pixel feature vector[J].,2021,(08):724.[doi:doi:10.3969/j.issn.1000-4440.2021.03.023]
[4]郭松,常庆瑞,郑智康,等.基于无人机高光谱影像的玉米叶绿素含量估测[J].江苏农业学报,2022,38(04):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
 GUO Song,CHANG Qing-rui,ZHENG Zhi-kang,et al.Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images[J].,2022,38(08):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
[5]李瑞鑫,张宝林,潘丽杰,等.不同无人机飞行高度下玉米叶片叶绿素相对含量的无人机遥感反演及其指示叶位的识别[J].江苏农业学报,2024,(07):1234.[doi:doi:10.3969/j.issn.1000-4440.2024.07.010]
 LI Ruixin,ZHANG Baolin,PAN Lijie,et al.Unmanned aerial vehicle remote sensing inversion of relative chlorophyll content of maize leaves and identification of their indicator leaf at different flight altitudes[J].,2024,(08):1234.[doi:doi:10.3969/j.issn.1000-4440.2024.07.010]

备注/Memo

备注/Memo:
收稿日期:2022-09-01基金项目:国家自然科学基金项目(41761014、41971094、42161025、42104096);兰州交通大学优秀科研平台(团队)科学研究资助计划项目(201806)作者简介:龚志远(1996-),男,安徽合肥人,硕士研究生,主要从事城市生态遥感研究。(E-mail)1043287311@qq.com通讯作者:李雪梅,(E-mail)lixuemei@lzjtu.edu.cn
更新日期/Last Update: 2024-01-15