参考文献/References:
[1]康飞龙,李佳,刘涛,等. 多类农作物病虫害的图像识别应用技术研究综述[J]. 江苏农业科学, 2020,48(22):22-27.
[2]张善文,邵彧,齐国红,等. 基于多尺度注意力卷积网络的作物害虫检测[J]. 江苏农业学报,2021,37(3):579-588.
[3]YAAKOB S N, JAIN L. An insect classification analysis based on shape features using quality threshold ARTMAP and moment invariant[J]. Applied Intelligence, 2012, 37:12-30.
[4]MARTINEAU M, CONTE D, RAVEAUX R, et al. A survey on image-based insect classification [J]. Pattern Recognition, 2017, 65:273-284.
[5]EBRAHIMI M A, KHOSHTAGHAZA M H, MINAEI S, et al. Vision-based pest detection based on SVM classification method[J]. Computers and Electronics in Agriculture, 2017, 137:52-58.
[6]RAWAT W, WANG Z. Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Computation, 2017, 29(9): 2352-2449.
[7]LI Y, WANG H, DANG L M, et al. Crop pest recognition in natural scenes using convolutional neural networks[J]. Computers and Electronics in Agriculture, 2020, 169. DOI:10.1016/j.compag.2019.105174.
[8]XIA D, CHEN P, WANG B, et al. Insect detection and classification based on an improved convolutional neural network[J]. Sensors, 2018, 18(12). DOI: 10.3390/s18124169.
[9]LIU L, WANG R, XIE C, et al. PestNet: an end-to-end deep learning approach for large-scale multi-class pest detection and classification[J]. IEEE Access, 2019, 7: 45301-45312.
[10]WANG Q J, ZHANG S Y, DONG S F, et al. Pest24: a large-scale very small object data set of agricultural pests for multi-target detection[J]. Computers and Electronics in Agriculture, 2020, 175. DOI:10.1016/j.compag.2020.105585.
[11]张博,张苗辉,陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J].农业工程学报, 2019, 35(19):209-215.
[12]LIU X, ZHANG Y, JING H, et al. Ore image segmentation method using U-Net and Res-Unet convolutional networks[J]. RSC Advances, 2020, 10(16): 9396-9406.
[13]SEVASTOPOLSKY A. Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network[J]. Pattern Recognition and Image Analysis, 2017, 27(3): 618-624.
[14]孙俊,何小飞,谭文军,等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J].农业工程学报,2018,34(11):159-165.
[15]YANG X. An overview of the attention mechanisms in computer vision[C]. Inner Mongolia:IOP Publishing, 2020.
[16]LI A, CHEN J, KANG B, et al. Adaptive multi-attention convolutional neural network for fine-grained image recognition[C]. Waikoloa: IEEE, 2019.
[17]WANG M, LIU X, GAO Y, et al. Superpixel segmentation: a benchmark[J]. Signal Processing: Image Communication, 2017, 56: 28-39.
[18]QIN F, GUO J, LANG F. Superpixel segmentation for polarimetric SAR imagery using local iterative clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 13-17.
[19]ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
[20]YANG F, SUN Q, JIN H, et al. Superpixel segmentation with fully convolutional networks[C]. Virtual: IEEE, 2020.
[21]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]. Boston: IEEE, 2015.