[1]张景路,张绘芳,高健,等.基于林分生长模型的天山云杉碳汇潜力估测[J].江苏农业学报,2023,(06):1332-1340.[doi:doi:10.3969/j.issn.1000-4440.2023.06.008]
 ZHANG Jing-lu,ZHANG Hui-fang,GAO Jian,et al.Estimation of carbon sequestration potential of Picea schrenkiana based on stand growth model[J].,2023,(06):1332-1340.[doi:doi:10.3969/j.issn.1000-4440.2023.06.008]
点击复制

基于林分生长模型的天山云杉碳汇潜力估测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年06期
页码:
1332-1340
栏目:
耕作栽培·资源环境
出版日期:
2023-09-30

文章信息/Info

Title:
Estimation of carbon sequestration potential of Picea schrenkiana based on stand growth model
作者:
张景路张绘芳高健朱雅丽地力夏提·包尔汉
(新疆林业科学院现代林业研究所,新疆乌鲁木齐830000)
Author(s):
ZHANG Jing-luZHANG Hui-fangGAO JianZHU Ya-liDilixiati·Baoerhan
(Modern Forestry Research Institute of Xinjiang Academy of Forestry, Urumqi 830000,China)
关键词:
天山云杉林分蓄积量生长模型林分碳储量生长模型碳储量碳汇潜力
Keywords:
Picea schrenkianastand storage growth modelstand carbon storage growth modelcarbon storagecarbon sequestration potential
分类号:
S758.5+1
DOI:
doi:10.3969/j.issn.1000-4440.2023.06.008
文献标志码:
A
摘要:
为掌握研究区天山云杉(Picea schrenkiana)林分碳储量现状,估算其碳汇潜力,了解其碳汇动态变化过程,分别基于Gompertz、Logistic、Mitscherlich和Schumacher等4个常用生长曲线方程,采用林龄、平均树高、平均胸径和林分密度等指标构建林分蓄积量生长模型,选取最优模型,通过林分生物量-林分蓄积量回归模型和含碳系数建立林分碳储量生长模型,计算不同林分条件下天山云杉生长到180 a的碳密度年均增长量,预测研究区当前、30 a后和60 a后的林分碳储量及碳汇潜力。结果表明,对比不同生长曲线方程后选择Schumacher方程构建林分蓄积生长模型并转化为林分碳储量生长模型,模型精度89.082%,估计值的标准差13.006、总系统误差-0.293、平均系统误差-5.943、决定系数0.895。基于林分碳储量生长模型计算出天山云杉在相同林分密度条件下,随着林分立地条件的变化,林分碳密度0~180 a年平均增长量为0.020~0.641 t/(hm2·a),研究区全域林分碳密度平均增长量为0.299 t/(hm2·a),年平均增长量拐点位于30 a处。天山云杉林分碳汇潜力为1.245×104 t碳;当前、未来30 a和未来60 a林分碳储量分别为3.439×106 t碳、3.447×106 t碳、3.450×106 t碳,未来30 a、未来31~60 a的增长量分别为8×103 t碳、3×103 t碳,涨幅分别为0.233%和0.087%。本研究构建的林分碳储量生长模型具有较高的精度和稳定性,可用于研究区天山云杉林分碳汇潜力的估测;研究区天山云杉成熟林、过熟林占比较高,林分碳汇潜力低,需进行林龄结构优化,以促进天山云杉林的可持续发展。
Abstract:
The aim of the study was to understand the carbon storage status of Picea schrenkiana stand in the study area and estimate its carbon sequestration potential, as well as understand the dynamic change process of carbon sequestration. Growth model for stand volume was constructed by using indexes such as stand age, average tree height, average tree diameter and stand density based on four conventional growth curve equations of Gompertz, Logistic, Mitscherlich and Schumacher. The carbon reserve growth model of stand was established by stand biomass volume-stand volume regression model and carbon content coefficient after selecting the optimal model. The annual average growth amount of carbon density of P. schrenkiana growed to 180 a under different stand conditions was calculated, and the present, 30 years later and 60 years later stand carbon storage and carbon sequestration potential in the study area was predicted. The results showed that, after comparing different growth curve equations, Schumacher equation was selected to construct the stand volume growth model which was transformed into stand carbon storage growth model with the model accuracy of 89.082%. The standard deviation of the estimated value was 13.006, the overall systematic error was -0.293, the average systematic error was -5.943, and the determination coefficient was 0.895. Based on the growth model of stand carbon storage, it was calculated that, under the same condition of stand density, the average annual growth of stand carbon density of P. schrenkiana was 0.020-0.641 t/(hm2·a) from 0 a to 180 a as the site condition of the stand changed. The average annual growth of stand carbon density in the study area was 0.299 t/(hm2·a), and the inflection point of average growth was located at 30 a. The carbon sequestration potential of P. schrenkiana stand was 1.245×104t carbon, and the carbon storage values of P. schrenkiana stand at present, in the future 30 a and 60 a were 3.439×106t carbon, 3.447×106t carbon, 3.450×106t carbon respectively, the growth values of carbon storage in the future 30 a and 31-60 a were 8×103t carbon, 3×103t carbon respectively, and the increases were 0.233% and 0.087% respectively. The stand carbon storage growth model constructed in this study shows high accuracy and stability, and can be used to estimate the stand carbon sequestration potential of P. schrenkiana in the study area. The proportion of mature forest and over mature forest of P. schrenkiana in the study area is high and the stand carbon sequestration potential is low, so it is necessary to optimize the forest age structure to promote the sustainable development of P. schrenkiana forest.

参考文献/References:

[1]杨帆,刘金山,贺东北. 我国森林碳库特点与森林碳汇潜力分析[J].中南林业调查规划,2012,31(1):1-4.
[2]李顺龙. 森林碳汇问题研究[M].哈尔滨:东北林业大学出版社,2006.
[3]颜士鹏. 应对气候变化森林碳汇国际法律机制的演进及其发展趋势[J].法学评论,2011(4):127-133.
[4]姜霞. 中国林业碳汇潜力和发展路径研究[D].杭州:浙江大学,2015.
[5]汲玉河,郭柯,倪健,等. 安徽省森林碳储量现状及固碳潜力[J].植物生态学报,2016,40(4):395-404.
[6]周瑞伍,彭明春,张一平. 云南主要森林植被碳储量及固碳潜力模拟研究[J].云南大学学报(自然科学版),2017,39(6):1089-1103.
[7]李秀娟,周涛,何学兆. NPP增长驱动下的中国森林生态系统碳汇[J].自然资源学报,2009,24(3):491-497.
[8]徐冰,郭兆迪,朴世龙,等. 2000-2050年中国森林生物量碳库:基于生物量密度与林龄关系的预测[J].中国科学:生命科学,2010,40(7):587-594.
[9]李斌,方晰,项文化,等. 湖南省杉木林植被碳贮量、碳密度及碳吸存潜力[J].林业科学,2013,49(3):25-32.
[10]陈科宇,字洪标,阿的鲁骥,等. 青海省森林乔木层碳储量现状及固碳潜力[J].植物生态学报,2018,42(8):43-52.
[11]程德波. 巩留县志[M].乌鲁木齐:新疆人民出版社,2005.
[12]魏文寿,袁玉江,喻树龙,等. 中国天山山区235 a气候变化及降水趋势预测[J].中国沙漠,2008,28(5):803-808.
[13]赵洪壮,李有利,杨景春,等. 基于DEM数据的北天山地貌形态分析[J].地理科学,2009,29(3):445-449.
[14]张绘芳,冯鹏飞,高健,等. 2015-2018年西天山国家级自然保护区自然资源保护成效监测[J].林业科技通讯,2020(7):53-58.
[15]REINEKE L H. Perfecting a stand-density index for even-agedforests[J]. Journal of Agricultural Research, 1933,46(7):627-638.
[16]张连金,惠刚盈,孙长忠. 不同林分密度指标的比较研究[J].福建林学院学报,2011,31(3):257-261.
[17]方怀龙. 现有林分密度指标的评价[J].东北林业大学学报,1995,23(4):100-105.
[18]杜纪山. 天然林分生长模型在小班数据更新中的应用[J].林业科学,2000,36(3):52-58.
[19]张煜星,王雪军. 全国森林蓄积生物量模型建立和碳变化研究[J].中国科学: 生命科学,51(2):199-214.
[20]张绘芳,高亚琪,李霞,等. 新疆西伯利亚云杉生物量模型研究[J].中南林业科技大学学报,2015,35(11):115-120.
[21]朱雅丽,高亚琪,张绘芳,等. 新疆西伯利亚云杉含碳系数分析[J].林业资源管理,2016 (3):44-48.
[22]李俊. 南方集体林区典型林分类型结构特征及生长模型研究[D].长沙:中南林业科技大学,2012.
[23]石丽萍,冯仲科. 人工林生长与收获预测模型的基本方法[J].北京林业大学学报,2005,27(S2):222-225.
[24]许巧燕. 林分生长模型的构建与模拟[D].杭州:浙江农林大学,2015.
[25]戎建涛,何友均,应苗苗,等. 丹清河林场天然次生林林分蓄积量生长模型[J].西北林学院学报,2014,29(3):155-160.
[26]陈永富. 基准年龄立地质量评价的影响分析[J].林业科学研究,2010(2):283-287.
[27]潘俊忠. 理论生长方程建立林分平均树高生长模型比较研究[J].林业勘察设计,2019,39(4):21-24.
[28]丁良忱,刘萍. 天山中东部雪岭云杉林立地等级表的编制[J].新疆农业科学,1986(6):25.
[29]李奇,朱建华,冯源,等. 中国森林乔木林碳储量及其固碳潜力预测[J].气候变化研究进展,2018,14(3):287-294.
[30]郑拴丽. 新疆天山雪岭云杉和阿尔泰山西伯利亚落叶松生物量、碳储量及空间分布格局研究[D].乌鲁木齐:新疆大学,2016.

备注/Memo

备注/Memo:
收稿日期:2022-10-08基金项目:新疆维吾尔自治区公益性科研院所基本科研业务专项(KY2020019);新疆林业和草原局天然林保护管理补助资金项目[新林规字(2021)476号]作者简介:张景路(1989-),男,山东阳谷人,硕士,助理研究员,主要从事森林资源监测与遥感技术应用研究。(E-mail)867591948@qq.com通讯作者:张绘芳, (E-mail)396930128@qq.com
更新日期/Last Update: 2023-11-17