[1]储鑫,李祥,罗斌,等.基于改进YOLOv4算法的番茄叶部病害识别方法[J].江苏农业学报,2023,(05):1199-1208.[doi:doi:10.3969/j.issn.1000-4440.2023.05.012]
 CHU Xin,LI Xiang,LUO Bin,et al.Identification method of tomato leaf diseases based on improved YOLOv4 algorithm[J].,2023,(05):1199-1208.[doi:doi:10.3969/j.issn.1000-4440.2023.05.012]
点击复制

基于改进YOLOv4算法的番茄叶部病害识别方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年05期
页码:
1199-1208
栏目:
农业信息工程
出版日期:
2023-08-31

文章信息/Info

Title:
Identification method of tomato leaf diseases based on improved YOLOv4 algorithm
作者:
储鑫123李祥1罗斌23王晓冬23 黄硕23
(1.东华理工大学信息工程学院,江西南昌330013;2.国家农业信息化工程技术研究中心,北京100097;3.北京市农林科学院智能装备技术研究中心,北京100097)
Author(s):
CHU Xin123LI Xiang1LUO Bin23WANG Xiao-dong23HUANG Shuo23
(1.College of Information Engineering, East China University of Technology, Nanchang 330013, China;2.National Engineering Technology Research Center for Agricultural Informatization, Beijing 100097, China;3.Research Center of Intelligent Equipment Technology, Beijing Academy of Agriculture and Forestry, Beijing 100097, China)
关键词:
YOLOv4MobileNet轻量化注意力机制病害
Keywords:
YOLOv4MobileNetlight weightattentional mechanismdiseases
分类号:
S436.412
DOI:
doi:10.3969/j.issn.1000-4440.2023.05.012
文献标志码:
A
摘要:
为快速准确识别自然环境下的番茄叶片病害,提出一种基于改进YOLOv4算法的轻量化番茄叶部病害识别方法。该方法根据番茄病害特征采用K均值聚类算法调整先验框的维度,并使用宽度因子为0.25的MobileNetv1代替YOLOv4原有的主干网络CSPDarknet53进行特征提取,并在特征融合网络PANet中引入深度可分离卷积代替原有的3×3标准卷积,同时在主干网络的2个输出特征层和空间金字塔池化输出层分别嵌入卷积块注意力模块(CBAM),提高模型识别精度。试验结果表明,改进后的模型对8类番茄叶片整体检测精准性(mAP)为98.76%,参数量为12.64 M,传输帧数为1 s 101.76帧,相较于原YOLOv4模型,模型参数量减少80%,每秒传输帧数比原始YOLOv4模型提高了130%。
Abstract:
In order to identify tomato leaf diseases in natural environment quickly and accurately, a lightweight tomato leaf disease identification method based on improved YOLOv4 algorithm was proposed. The method used K-means clustering algorithm to adjust the dimensions of the prior box according to the characteristics of tomato disease, and used MobileNetv1 with a width factor of 0.25 instead of the original backbone network CSPDarknet53 of YOLOv4 for feature extraction, and introduced deep separable convolution in place of the original 3×3 standard convolution in the feature fusion network PANet. At the same time, the convolutional block attention module (CBAM) was embedded in the two output feature layers and the spatial pyramid pooling output layer of the backbone network to improve the model recognition accuracy. The results showed that, the overall detection accuracy (mAP) of the improved model for eight types of tomato leaves was 98.76%, the parameter quantity was 12.64 M, and the transmission frame number was 101.76 f/s, which was 80% lower than that of the original YOLOv4 model, and the number of transmitted frames per second was 130% higher than that of the original YOLOv4 model.

参考文献/References:

[1]WANG X W,LIU J, ZHU X N. Early real-time detection algorithm of tomato diseases and pests in the natural environment[J]. Plant Methods,2021,17(1):1-17.
[2]XU C,DING J Q,QIAO Y,et al. Tomato disease and pest diagnosis method based on the Stacking of prescription data[J]. Computers and Electronics in Agriculture,2022,197:106997.
[3]吕盛坪,李灯辉,冼荣亨. 深度学习在我国农业中的应用研究现状[J].计算机工程与应用,2019,55(20):24-33,51.
[4]刘文波,叶涛,李颀. 基于改进SOLO v2的番茄叶部病害检测方法[J].农业机械学报,2021,52(8):213-220.
[5]文斌,曹仁轩,杨启良,等. 改进YOLOv3算法检测三七叶片病害[J].农业工程学报,2022,38(3):164-172.
[6]HU G S,YANG X W,ZHANG Y,et al. Identification of tea leaf diseases by using an improved deep convolutional neural network[J]. Sustainable Computing: Informatics and Systems,2019,24: 100353.
[7]QI J T,LIU X N,LIU K,et al. An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease[J]. Computers and Electronics in Agriculture,2022,194:106780.
[8]刘延鑫,王俊峰,杜传印,等. 基于YOLOv3的多类烟草叶部病害检测研究[J].中国烟草科学,2022,43(2):94-100.
[9]王超学,祁昕,马罡,等. 基于YOLOv3的葡萄病害人工智能识别系统[J].植物保护,2022,48(6):278-288.
[10]周维,牛永真,王亚炜,等. 基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J].江苏农业学报,2022,38(3):685-695.
[11]王权顺,吕蕾,黄德丰,等. 基于改进YOLOv4算法的苹果叶部病害缺陷检测研究[J].中国农机化学报,2022,43(11):182-187.
[12]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C].LasVegas:IEEE Computer Society,2016.
[13]BOCHKOVSKIY A,WANG C Y ,LIAO H Y. YOLOv4:optimal speed and accuracy of object detection[J/OL].arXiv,2020.
[14]胡文骏,杨莉琼,肖宇峰,等.识别安全帽佩戴的轻量化网络模型[J/OL].计算机工程与应用:1-9.
[2023-03-15].http://kns.cnki.net/kcms/detail/11.2127.TP.20220524.1106.011.html.
[15]HE K ,ZHANG X , REN S ,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916.
[16]LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]. Salt Lake City,UT,USA:IEEE Press, 2018: 8759-8768.
[17]陈道怀,汪杭军. 基于改进YOLOv4的林业害虫检测[J].浙江农业学报,2022,34(6):1306-1315.
[18]裴瑞景,王硕,王华英. 基于改进YOLOv4算法的水果识别检测研究[J/OL].激光技术:1-11
[2023-03-15].http://kns.cnki.net/kcms/detail/51.1125.TN.20220518.1135.004.html.
[19]SRINIVASU P N,SIVASAI J G,IJAZ M F,et al. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM[J]. Sensors,2021,21(8):2852.
[20]WANG H T,LU F Y,TONG X,et al. A model for detecting safety hazards in key electrical sites based on hybrid attention mechanisms and lightweight Mobilenet[J]. Energy Reports,2021,7(S7):716-724.
[21]郝帅,张旭,马旭,等. 基于CBAM-YOLOv5的煤矿输送带异物检测[J].煤炭学报,2022,47(11):4149-4158.
[22]姚齐水,别帅帅,余江鸿. 一种结合改进Inception V2模块和CBAM的轴承故障诊断方法[J].振动工程学报,2022,35(4):949-957.
[23]REN S Q,HE K M,GIRSHICK R, et al. FasterR-CNN: towards real - time object detection with region proposal networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[24]LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [M]. Amsterdam,The Netherland:Proceedings of the European Conference on Computer Vision,2016.
[25]胡政,张艳,尚静,等. 高光谱图像在农作物病害检测识别中的研究进展[J].江苏农业科学,2022,50(8):49-55.
[26]牛学德,高丙朋,南新元,等. 基于改进DenseNet卷积神经网络的番茄叶片病害检测[J].江苏农业学报,2022,38(1):129-134.

相似文献/References:

[1]周维,牛永真,王亚炜,等.基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J].江苏农业学报,2022,38(03):685.[doi:doi:10.3969/j.issn.1000-4440.2022.03.014]
 ZHOU Wei,NIU Yong-zhen,WANG Ya-wei,et al.Rice pests and diseases identification method based on improved YOLOv4-GhostNet[J].,2022,38(05):685.[doi:doi:10.3969/j.issn.1000-4440.2022.03.014]

备注/Memo

备注/Memo:
收稿日期:2022-08-31 基金项目:江苏省科技计划重点及面上项目(BE2021379);江西省核地学数据科学与系统工程技术研究中心开放基金项目(JETRCNGDSS201801) 作者简介:储鑫(1998-),女,安徽安庆人,硕士研究生,研究方向为计算机视觉。(E-mail)416940305@qq.com。罗斌为共同第一作者通讯作者:李祥,(Tel)0791-83897395;(E-mail)tom_lx@126.com
更新日期/Last Update: 2023-09-13