参考文献/References:
[1]WANG X W,LIU J, ZHU X N. Early real-time detection algorithm of tomato diseases and pests in the natural environment[J]. Plant Methods,2021,17(1):1-17.
[2]XU C,DING J Q,QIAO Y,et al. Tomato disease and pest diagnosis method based on the Stacking of prescription data[J]. Computers and Electronics in Agriculture,2022,197:106997.
[3]吕盛坪,李灯辉,冼荣亨. 深度学习在我国农业中的应用研究现状[J].计算机工程与应用,2019,55(20):24-33,51.
[4]刘文波,叶涛,李颀. 基于改进SOLO v2的番茄叶部病害检测方法[J].农业机械学报,2021,52(8):213-220.
[5]文斌,曹仁轩,杨启良,等. 改进YOLOv3算法检测三七叶片病害[J].农业工程学报,2022,38(3):164-172.
[6]HU G S,YANG X W,ZHANG Y,et al. Identification of tea leaf diseases by using an improved deep convolutional neural network[J]. Sustainable Computing: Informatics and Systems,2019,24: 100353.
[7]QI J T,LIU X N,LIU K,et al. An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease[J]. Computers and Electronics in Agriculture,2022,194:106780.
[8]刘延鑫,王俊峰,杜传印,等. 基于YOLOv3的多类烟草叶部病害检测研究[J].中国烟草科学,2022,43(2):94-100.
[9]王超学,祁昕,马罡,等. 基于YOLOv3的葡萄病害人工智能识别系统[J].植物保护,2022,48(6):278-288.
[10]周维,牛永真,王亚炜,等. 基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J].江苏农业学报,2022,38(3):685-695.
[11]王权顺,吕蕾,黄德丰,等. 基于改进YOLOv4算法的苹果叶部病害缺陷检测研究[J].中国农机化学报,2022,43(11):182-187.
[12]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C].LasVegas:IEEE Computer Society,2016.
[13]BOCHKOVSKIY A,WANG C Y ,LIAO H Y. YOLOv4:optimal speed and accuracy of object detection[J/OL].arXiv,2020.
[14]胡文骏,杨莉琼,肖宇峰,等.识别安全帽佩戴的轻量化网络模型[J/OL].计算机工程与应用:1-9.
[2023-03-15].http://kns.cnki.net/kcms/detail/11.2127.TP.20220524.1106.011.html.
[15]HE K ,ZHANG X , REN S ,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916.
[16]LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]. Salt Lake City,UT,USA:IEEE Press, 2018: 8759-8768.
[17]陈道怀,汪杭军. 基于改进YOLOv4的林业害虫检测[J].浙江农业学报,2022,34(6):1306-1315.
[18]裴瑞景,王硕,王华英. 基于改进YOLOv4算法的水果识别检测研究[J/OL].激光技术:1-11
[2023-03-15].http://kns.cnki.net/kcms/detail/51.1125.TN.20220518.1135.004.html.
[19]SRINIVASU P N,SIVASAI J G,IJAZ M F,et al. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM[J]. Sensors,2021,21(8):2852.
[20]WANG H T,LU F Y,TONG X,et al. A model for detecting safety hazards in key electrical sites based on hybrid attention mechanisms and lightweight Mobilenet[J]. Energy Reports,2021,7(S7):716-724.
[21]郝帅,张旭,马旭,等. 基于CBAM-YOLOv5的煤矿输送带异物检测[J].煤炭学报,2022,47(11):4149-4158.
[22]姚齐水,别帅帅,余江鸿. 一种结合改进Inception V2模块和CBAM的轴承故障诊断方法[J].振动工程学报,2022,35(4):949-957.
[23]REN S Q,HE K M,GIRSHICK R, et al. FasterR-CNN: towards real - time object detection with region proposal networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[24]LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [M]. Amsterdam,The Netherland:Proceedings of the European Conference on Computer Vision,2016.
[25]胡政,张艳,尚静,等. 高光谱图像在农作物病害检测识别中的研究进展[J].江苏农业科学,2022,50(8):49-55.
[26]牛学德,高丙朋,南新元,等. 基于改进DenseNet卷积神经网络的番茄叶片病害检测[J].江苏农业学报,2022,38(1):129-134.