参考文献/References:
[1]KARKEE M, ADHIKARI B, AMATYA S, et al. Identification of pruning branches in tall spindle apple trees for automated pruning[J]. Computers & Electronics in Agriculture, 2014, 103:127-135.
[2]MIKA A, BULER Z, TREDER W. Mechanical pruning of apple trees as an alternative to manual pruning[J]. Ogrodnictwo,2016,15(1):113-121.
[3]HE L, SCHUPP J. Sensing and automation in pruning of apple trees: a review[J]. Agronomy, 2018, 8(10):211.
[4]AMATYA S, KARKEE M, GONGAL A, et al. Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting[J]. Biosystems Engineering, 2016, 146(4):3-15.
[5]HAN W K, CHEN C. Fruit detection and segmentation for apple harvesting using visual sensor in orchards[J]. Sensors, 2019, 19(20): 4599.
[6]MAJEED Y, ZHANG J, ZHANG X, et al. Deep learning based segmentation for automated training of apple trees on trellis wires[J]. Computers and Electronics in Agriculture, 2020, 170: 105277.
[7]ELFIKY N M, AKBAR S A, SUN J, et al. Automation of dormant pruning in specialty crop production: an adaptive framework for automatic reconstruction and modeling of apple trees[C]. Piscataway, NJ:IEEE Computer Society,2015: 65-73.
[8]MEDEIROS H, KIM D, SUN J, et al. Modeling dormant fruit trees for agricultural automation[J]. Journal of Field Robotics, 2017, 34(7):1203-1224.
[9]徐思雨,祝继华,田智强,等. 逐步求精的多视角点云配准方法[J].自动化学报,2019,45(8):1486-1494.
[10]张蕊,孟晓曼,曾志远,等. 图卷积神经网络在点云语义分割中的研究综述[J].计算机工程与应用, 2022, 58(24):29-46.
[11]LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:4558-4567.
[12]GUINARD S,LANDRIEU L. Weakly supervised segmentation-aided classification of urban scenes from 3d LiDAR point clouds[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2017:151-157.
[13]LI Y, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[C]. Ithaca, NY:Openreview. net,2016.
[14]CHO K, VAN MERRINBOER B, BOUGARES F, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. Stroudsburg:ACL,2014.
[15]LI Y, BU R, SUN M, et al. Pointcnn: convolution on x-trans formed points[C]. Montreal Canada: Neural Information Processing System. Foundation, 2018.
[16]WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2018, 38(5):1-12.