[1]胡冬春,徐富强,刘旭,等.昆虫生长阻滞肽研究进展[J].江苏农业学报,2023,(04):1072-1079.[doi:doi:10.3969/j.issn.1000-4440.2023.04.017]
 HU Dong-chun,XU Fu-qiang,LIU Xu,et al.Research progress on insect growth-blocking peptide[J].,2023,(04):1072-1079.[doi:doi:10.3969/j.issn.1000-4440.2023.04.017]
点击复制

昆虫生长阻滞肽研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
1072-1079
栏目:
综述
出版日期:
2023-08-30

文章信息/Info

Title:
Research progress on insect growth-blocking peptide
作者:
胡冬春徐富强刘旭李树忠冯从经
(扬州大学植物保护学院,江苏扬州225009)
Author(s):
HU Dong-chunXU Fu-qiangLIU XuLI Shu-zhongFENG Cong-jing
(College of Plant Protection, Yangzhou University,Yangzhou 225009,China)
关键词:
生长阻滞肽细胞因子生长发育免疫反应生理平衡
Keywords:
growth-blocking peptidecytokinegrowth and developmentimmune responsephysiological balance
分类号:
Q965
DOI:
doi:10.3969/j.issn.1000-4440.2023.04.017
文献标志码:
A
摘要:
在长期进化中,细胞因子在昆虫的环境适应、生长发育和免疫防御中发挥重要作用。昆虫生长阻滞肽(Growth-blocking peptide, GBP)是一种最初在黏虫(Pseudaletia separata)中发现的细胞因子,能够延缓幼虫化蛹。近年来研究结果陆续证实GBP是一种双重生长调节因子,通过影响胰岛素信号通路以调节昆虫生长发育,调控昆虫的免疫和应激反应,平衡体液免疫和细胞免疫。本文简要综述GBP参与调控昆虫免疫、生长与发育的功能,并对未来相关的研究方向和应用进行了展望,有助于了解GBP的生理功能及昆虫维持机体内稳态的分子机制。
Abstract:
Cytokines have played an important role in environmental adaptation, growth and development, and immune defense in insects over the long evolutionary period. Insect growth-blocking peptide (GBP) is a cytokine originally found in Pseudaletia separata, it can delay pupation of the larvae. Recent studies have verified that GBP is a kind of dual growth regulator, which regulates insect growth and development, insect immune and stress responses, and balances humoral and cellular immunity by affecting insulin signaling pathways. In this article, the functions of GBP involved in regulation of insect immunity, growth and development were reviewed, and the future research direction and application were prospected. The results are helpful for understanding the physiological functions of GBP and revealing the molecular mechanisms of insects to maintain the organism homeostasis.

参考文献/References:

[1]XU J X, YANG H Y, WU J C. Effects of elevated solar UV-B radiation on herbivorous insects [J]. Chinese Journal of Ecology, 2006, 25(7): 845-850.
[2]付伟利,杜移珍,张敏. 镉胁迫对昆虫的毒性效应及昆虫防御机制的研究进展 [J]. 中国药理学与毒理学杂志, 2015,29(6): 1001-1006.
[3]王晓迪,冀顺霞,申晓娜,等. 温度胁迫下昆虫表观遗传机制的研究进展 [J]. 中国生物防治学报, 2021, 37(3): 598-608.
[4]DINARELLO C A. Historical insights into cytokines [J]. European Journal Immunology, 2007, 37(S1):34-45.
[5]VANHA-AHO L M, VALANNE S, RMET M. Cytokines in Drosophila immunity [J]. Immunology Letters, 2016, 170:42-51.
[6]HAYAKAWA Y. Juvenile hormone esterase activity repressive factor in the plasma of parasitized insect larvae [J]. Biological Chemistry, 1990, 265(19): 10813-10816.
[7]TSUZUKI S, OCHIAI M, MATSUMOTO H, et al. Drosophila growth-blocking peptide-like factor mediates acute immune reactions during infectious and non-infectious stress [J]. Scientific Reports, 2012, 2(1): 1-10..
[8]MATSUMURA T, NAKANO F, MATSUMOTO H, et al. Identification of a cytokine combination that protects insects from stress [J]. Insect Biochemistry and Molecular Biology, 2018, 97: 19-30.
[9]ZHANG Y C, HE J, ZHANG Y X, et al. Insect cytokine growth-blocking peptide may regulate density-dependent phase trait of cuticular melanization in the larval armyworm, Mythimna separate [J]. Journal of Asia-Pacific Entomology, 2020, 23(2): 498-503.
[10]HAYAKAWA Y. Growth-blocking peptide: an insect biogenic peptide that prevents the onset of metamorphosis [J]. Journal of Insect Physiology, 1995, 41(1): 1-6.
[11]SUNG E J, RYUDA M, MATSUMOTO H, et al. Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress [J]. Proceedings of the National Academy of Sciences, 2017, 114(52): 13786-13791.
[12]MATSUMOTO H, TSUZUKI S, DATE-ITO A, et al. Characteristics common to a cytokine family spanning five orders of insects [J]. Insect Biochemistry and Molecular Biology, 2012, 42(6): 446-454.
[13]STRAND M R, HAYAKAWA Y, CLARK K D, et al. Plasmatocyte spreading peptide (PSP1) and growth blocking peptide (GBP) are multifunctional homologs [J]. Insect Physiology, 2000, 46(5): 817-824.
[14]AIZAWA T, HAYAKAWA Y, OHNISHI A, et al. Structure and activity of the insect cytokine growth-blocking peptide [J]. Journal of Biological Chemistry, 2001, 276(34): 31813-31818.
[15]CLARK K D, VOLKMAN B F, THOETKIATTIKUL H, et al. Alanine-scanning mutagenesis of plasmatocyte spreading peptide identifies critical residues for biological activity [J]. Journal of Biological Chemistry, 2001, 276(21): 18491-18496.
[16]DURESSA T F, BOONENB K, HAYAKAWAC Y, et al. Identification and functional characterization of a novel locust peptide belonging to the family of insect growth blocking peptides [J]. Peptides, 2015, 74: 23-32.
[17]ISHII K, ADACHI T, HAMAMOTO H, et al. Insect cytokine paralytic peptide activates innate immunity via nitric oxide production in the silkworm Bombyx mori[J]. Developmental and Comparative Immunology, 2013, 39(3): 147-153.
[18]MIURA K, KAMIMURA M, AIZAWA T, et al. Solution structure of paralytic peptide of silkworm, Bombyx mori [J]. Peptides, 2002, 23(12): 2111-2116.
[19]NIYONSABA F, USHIO H, NAKANO N, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines [J]. Journal of Invest Dermatology, 2007, 127(3): 594-604.
[20]NINOMIYA Y, KURAKAKE M, ODA Y, et al. Insect cytokine growth-blocking peptide signaling cascades regulate two separate groups of target genes [J]. FEBS Journal, 2008, 275(5): 894-902.
[21]ZHOU Y X, WU S L, WANG H C, et al. Activation of PLC by an endogenous cytokine (GBP) in Drosophila S3 cells and its application as a model for studying inositol phosphate signalling through ITPK1 [J]. Biochemical Journal, 2012, 448(2): 273-283.
[22]SHAFEE T M, LAY F T, PHAN T K, et al. Convergent evolution of defensin sequence, structure and function [J]. Cellular and Molecular Life Sciences, 2017, 74(4): 663-682.
[23]HAYAKAWA Y. A putative new juvenile peptide hormone in lepidopteran insects [J]. Biochemical and Biophysical Research Communications, 1992, 185(3): 1141-1147.
[24]NOGUCHI H, TSUZUKI S, TANAKA K, et al. Isolation and characterization of a dopa decarboxylase cDNA and the induction of its expression by an insect cytokine, growth-blocking peptide in Pseudaletia separate[J]. Insect Biochemistry and Molecular Biology, 2003, 33(2): 209-217.
[25]HAYAKAWA Y. Insect cytokine growth-blocking peptide (GBP) regulates insect development [J]. Applied Entomology and Zoology, 2006, 41(4): 545-554.
[26]MARTNEZ-RAMREZ A C, FERR J, SILVA F J. Catecholamines in Drosophila melanogaster: DOPA and dopamine accumulation during development [J]. Insect Biochemistry and Molecular Biology, 1992, 22(5): 491-494.
[27]GRANGER N A, MACDONALD J D, MENOLD M, et al. Evidence of a stimulatory effect of cyclic AMP on corpus allatum activity in Manduca sexta[J]. Molecular and Cellular Endocrinology, 1994, 103(1/2): 73-80.
[28]GRANGER N A, STURGIS S L, EBERSOHL R, et al. Dopaminergic control of corpora allata activity in the larval tobacco hornworm, Manduca sexta[J]. Archives of Insect Biochemistry and Physiology, 2010, 32(3/4): 449-466.
[29]KOYAMA T, MIRTH C K. Growth-blocking peptides as nutrition-sensitive signals for insulin secretion and body size regulation [J]. PLoS Biology, 2016, 14(2): e1002392.
[30]MESCHI E, LOPOLD P, DELANOUE R. An EGF-responsive neural circuit couples insulin secretion with nutrition in Drosophila[J]. Developmental Cell, 2019, 48(1): 76-86.
[31]TSUZUKI S, SEKIGUCHI S, HAYAKAWA Y. Regulation of growth-blocking peptide expression during embryogenesis of the cabbage armyworm [J]. Biochemical and Biophysical Research Communications, 2005, 335(4): 1078-1084.
[32]HIRTH F, HARTMANN B, REICHERT H. Homeotic gene action in embryonic brain development of Drosophila [J]. Development (Cambridge), 1998, 125(9): 1579-1589.
[33]TSUZUKI S, SEKIGUCHI S, KAMIMURA M, et al. A cytokine secreted from the suboesophageal body is essential for morphogenesis of the insect head [J]. Mechanisms of Development, 2005, 122(2): 189-197.
[34]WAN H, LEE K S, KIM B Y, et al. Developmental regulation and antifungal activity of a growth-blocking peptide from the beet armyworm Spodoptera exigua[J]. Developmental and Comparative Immunology, 2013, 41(2): 240-247.
[35]ZOU F M, LEE K S, WAN H, et al. Morphological abnormalities and lethality in silkworm (Bombyx mori) larvae treated with high concentrations of insect growth-blocking peptide [J]. Journal of Asia-Pacific Entomology, 2014, 17(1): 93-97.
[36]HAYAKAWA Y, OHNISHI A, ENDO Y. Mechanism of parasitism-induced elevation of haemolymph growth-blocking peptide levels in host insect larvae (Pseudaletia separata) [J]. Journal of Insect Physiology, 1998, 44(9): 859-866.
[37]LEMAITRE B, NICOLAS E, MICHAUT L, et al. The dorsoventral regulatory gene cassette sptzle/Toll/cactus controls the potent antifungal response in Drosophila adults [J]. Cell, 1996, 86(6): 973-983.
[38]CHEN K K, WANG X Y, WEI X Y, et al. Nitric oxide-induced calcineurin A mediates antimicrobial peptide production through the IMD pathway [J]. Frontiers in Immunology, 2022, 13: 905419.
[39]TSUZUKI S, MATSUMOTO H, FURIHATA S, et al. Switching between humoral and cellular immune responses in Drosophila is guided by the cytokine GBP [J]. Nature Communication, 2014, 18(5): 4628.
[40]O’CONNOR J T, STEVENS A C, SHANNON E K, et al. Proteolytic activation of growth-blocking peptides triggers calcium responses through the GPCR Mthl10 during epithelial wound detection [J]. Developmental Cell, 2021, 56(15): 2160-2175.
[41]NINOMIYA Y, HAYAKAWA Y. Insect cytokine, growth-blocking peptide, is a primary regulator of melanin-synthesis enzymes in armyworm larval cuticle [J]. FEBS Journal, 2007, 274(7): 1768-1777.
[42]JEHLE J A, BLISSARD G W, BONNING B C, et al. On the classification and nomenclature of baculoviruses: a proposal for revision [J]. Archives of Virology, 2006, 151(7): 1257-1266.
[43]WAN H, ZHANG Y S, ZHAO X, et al. Enhancing the insecticidal activity of recombinant baculovirus by expressing a growth-blocking peptide from the beet armyworm Spodoptera exigua[J]. Journal of Asia-Pacific Entomology, 2015, 18(3): 535-539.
[44]HOFFMANN J. The immune response of Drosophila[J]. Nature, 2003, 426(6962): 33-38 .
[45]MATSUMOTO H, OCHIAI M, IMAI E, et al. Stress-derived reactive oxygen species enable hemocytes to release activator of growth blocking peptide (GBP) processing enzyme [J]. Journal of Insect Physiology, 2021, 131: 104225.
[46]MATSUMOTO Y, ODA Y, URYU M, et al. Insect cytokine growth-blocking peptide triggers a termination system of cellular immunity by inducing its binding protein [J]. Journal of Biological Chemistry, 2003, 278(40): 38579.
[47]ZHUO X R, CHEN L, WANG G J, et al. 20-Hydroxyecdysone promotes release of GBP-binding protein from oenocytoids to suppress hemocytic encapsulation [J]. Insect Biochemistry and Molecular Biology, 2018, 92: 53-64.
[48]WANG Y, LEUNG V H, ZHANG Y X, et al. The role of somatosensory innervation of adipose tissues [J]. Nature, 2022, 609(7927): 569-574.
[49]DOLEZAL T, KREJCOVA G, BAJGAR A, et al. Molecular regulations of metabolism during immune response in insects [J]. Insect Biochemistry and Molecular Biology, 2019, 109: 31-42.
[50]DIANGELO J R, BLAND M L, BAMBINA S, et al. The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 106(49): 20853-20858.
[51]HAYAKAWA Y, OHNISHI A, MIZOGUCHI A, et al. Distribution of growth-blocking peptide in the insect central nervous tissue [J]. Cell and Tissue Research, 2000, 300(3): 459-464.
[52]叶恭银,胡建,朱家颖,等. 寄生蜂调控寄主害虫免疫与发育机理的研究新进展 [J]. 应用昆虫学报, 2019, 56(3): 382-400.

备注/Memo

备注/Memo:
收稿日期:2022-11-02 基金项目:国家自然科学基金项目(32072417、32202281)作者简介:胡冬春(2000-),男,江苏靖江人,硕士研究生,研究方向为昆虫生理生化与分子生物学。(E-mail)hudongchunlol@163.com 通讯作者:冯从经,(E-mail)fengcj@yzu.edu.cn
更新日期/Last Update: 2023-09-12