[1]袁苗,刘鑫,党仕卓,等.红地球葡萄生长素响应因子VvARF7基因克隆及其光响应分析[J].江苏农业学报,2023,(04):1052-1061.[doi:doi:10.3969/j.issn.1000-4440.2023.04.015]
 YUAN Miao,LIU Xin,DANG Shi-zhuo,et al.Cloning of Red Earth grape auxin response factor VvARF7 and its light response analysis[J].,2023,(04):1052-1061.[doi:doi:10.3969/j.issn.1000-4440.2023.04.015]
点击复制

红地球葡萄生长素响应因子VvARF7基因克隆及其光响应分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
1052-1061
栏目:
园艺
出版日期:
2023-08-30

文章信息/Info

Title:
Cloning of Red Earth grape auxin response factor VvARF7 and its light response analysis
作者:
袁苗刘鑫党仕卓黄嘉俊高迎东周娟张亚红
(宁夏大学农学院,宁夏银川750021)
Author(s):
YUAN MiaoLIU XinDANG Shi-zhuoHUANG Jia-junGAO Ying-dongZHOU JuanZHANG Ya-hong
(College of Agriculture,Ningxia University,Yinchuan 750021,China)
关键词:
红地球葡萄生长素响应因子(ARF)基因克隆瞬时表达基因表达
Keywords:
Red Earth grapeauxin response factor (ARF)gene cloningtransient expressiongene expression
分类号:
Q785
DOI:
doi:10.3969/j.issn.1000-4440.2023.04.015
文献标志码:
A
摘要:
生长素是一类重要的植物内源激素,在植物的生长发育过程中具有重要作用,而生长素响应因子(ARF)是一类受生长素调节的转录因子,在生长素信号调控途径中起重要作用。因此,本研究以设施栽培的红地球葡萄VvARF7基因为对象,对其进行生物信息学及在红蓝光处理下的表达响应分析,为进一步研究其作用机制提供参考。结果显示,VvARF7基因全长3 468 bp,编码1 155个氨基酸,相对分子质量为12 958,蛋白质等电点为666。VvARF7与河岸葡萄VrARF7-like亲缘关系最近,为亲水蛋白质;二级结构中β-转角占814%,延伸链占1463%,α-螺旋占2727%,无规则卷曲占4996%,属于核定位蛋白质。启动子序列分析结果表明,VvARF7主要包括激素应答和光调控顺式作用元件。qRT-PCR结果表明,在花芽分化过程中处理组VvARF7相对表达量在5月30日-8月15日低于对照组,花芽分化后期(6月30日-7月30日)在处理组中的相对表达量显著低于对照组。由此推测VvARF7响应红蓝光(4∶1)参与葡萄花芽分化过程的调控。
Abstract:
Auxin is a kind of important plant endogenous hormones which plays important roles in the growth and development of plants Auxin reaction factor (ARF) is a kind of transcription factors regulated by auxin and plays an important role in the auxin signaling pathway Therefore, VvARF7 gene in facility cultivated Red Earth grape was used as the object in this study, bioinformatics analysis and expression response analysis under red and blue light treatment were made to provide reference for further study of the action mechanism The results showed that, the VvARF7 gene was 3 468 bp in full-length, encoded 1 155 amino acids, the relative molecular mass was 12 958, the protein isoelectric point was 666 VvARF7 showed the closest relationship with VrARF7-like of riparian grape, both of them were hydrophilic proteins In the secondary structure, the β-angle accounted for 814%, the extension chain accounted for 1463%, the α-spiral accounted for 2727% and the irregular curl accounted for 4996%, which indicated that the VvARF7 was nuclear located protein The analysis results of promoter sequence showed that, VvARF7 mainly included hormone response and cis-acting elements of light regulation The qRT-PCR results showed that, during the stage of grape bud differentiation, the relative expression amount of VvARF7 gene in the treatment group was lower than that in the control group between May 30th and August 15th Between June 30th and July 30th, which was the end stage of grape bud differentiation, the relative expression amount of VvARF7 gene in the treatment group was significantly lower than that in the control group It is speculated that VvARF7 responded to the participation of red and blue light (4∶1) into the regulation of grape bud differentiation

参考文献/References:

[1]BERNIER G H A,HOUSSA C,PETITJEAN A,et al. Physiological signals that induce flowering[J]. Plant Cell,1993,5(10):1147-1155.
[2]HANKE MV F H,PEIL A,HTTASCH C. No flower no fruit-genetic potentials to trigger flowering in fruit trees[J]. Genes Genom Genomics,2007,1:1-20.
[3]SONG Y H,ITO S,IMAIZUMI T. Flowering time regulation:photoperiod-and temperature-sensing in leaves[J]. Trends Plant Sci,2013,18(10):575-583.
[4]GUPTA S D,SAHOO T K. Light emitting diode (LED)-induced alteration of oxidative events during in vitro shoot organogenesis of curculigo orchioides gaertn[J]. Acta Physiologiae Plantarum,2015,37(11):233.
[5]王海波,王帅,王孝娣,等. 光质对设施葡萄叶片衰老与内源激素含量的影响[J]. 应用生态学报,2017,28(11):3535-3543.
[6]郑冬梅,林志斌,陈艺群,等. 不同光质对樱桃番茄产量及品质的影响[J]. 山西农业大学学报(自然科学版),2016,36(8):567-571.
[7]樊小雪,杨亚娜,徐刚. 不同光质处理对樱桃番茄生长发育和叶绿素荧光的影响[J]. 福建农业学报,2019,34(9):1026-1031.
[8]余阳,刘帅,李春霞,等. LED光质对夏黑葡萄光合特性和生理指标的影响[J]. 果树学报,2015,32(5):879-884.
[9]陈心源,田忍国,沈林章,等. 不同蓝红光比例发光二极管对火龙果花芽分化和果实品质的影响[J]. 浙江大学学报(农业与生命科学版),2019,45(1):14-22.
[10]李茹,李枝林,商正蕊,等. 不同LED光质对铁皮石斛瓶内开花的影响[J]. 南方农业学报,2019,50(7):1550-1556.
[11]樊小雪,宋波,徐海,等. LED光源对不结球白菜和番茄内源激素含量的影响[J]. 浙江农业学报,2015,27(11):1927-1931.
[12]段娜,贾玉奎,徐军,等. 植物内源激素研究进展[J]. 中国农学通报,2015,31(2):159-165.
[13]KESY J,FRANKOWSKI K,WILMOWICZ E,et al. The possible role of PnACS2 in IAA-mediated flower inhibition in Pharbitis nil[J]. Plant Growth Regulation,2010,61(1):1-10.
[14]ZHANG D,REN L,YUE J H,et al. GA4 and IAA were involved in the morphogenesis and development of flowers in Agapanthus praecox ssp. orientalis[J]. Journal of Plant Physiology,2014,171(11):256-267.
[15]XING L B, ZHANG D, LI Y M,et al. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis[J]. BMC Genomics,2014,15(1):1-22.
[16]CASADEVALL R,RODRIGUEZ R E,DEBERNARDI J M,et al. Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves[J]. Plant Cell,2013,25(9):3570-3583.
[17]ELLIS C M,NAGPAL P,YOUNG J C,et al. Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana[J]. Development,2005,132(20):4563-4574.
[18]OKUSHIMA Y,OVERVOORDE P J,ARIMA K,et al. Functional genomic analysis of the auxin response factor gene family members in Arabidopsis thaliana:unique and overlapping functions of ARF7 and ARF19[J]. Plant Cell,2005,17(2):444-463.
[19]WAN S B, LI W L, ZHU Y Y,et al. Genome-wide identification,characterization and expression analysis of the auxin response factor gene family in Vitis vinifera[J]. Plant Cell Reports,2014,33(8):1365-1375.
[20]LI S B,OUYANG W Z,HOU X J,et al. Genome-wide identification,isolation and expression analysis of auxin response factor (ARF)gene family in sweet orange (Citrus sinensis)[J]. Front Plant Science,2015,6:119.
[21]WANG D K, PEI K M, FU Y P, et al. Genome-wide analysis of the auxin response factors (ARF)gene family in rice (Oryza sativa)[J]. Gene,2007,394(1/2):13-24.
[22]WU J, WANG F Y, CHENG L, et al. Identification,isolation and expression analysis of auxin response factor (ARF)genes in Solanum lycopersicum[J]. Plant Cell Reports,2011,30(11):2059-2073.
[23]ROOSJEN M,PAQUE S,WEIJERS D. Auxin response factors:output control in auxin biology [J]. Journal of Experimental Botany,2018,69(2):179-188.
[24]SI B,LI D X,ZONG Z,et al. A review of auxin response factors (ARFs) in plants[J]. Frontiers in Plant Science,2016,7(742):47-54.
[25]NAGPAL P,ELLIS C M,WEBER H,et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation[J]. Development,2005,132(18):4107-4118.
[26]WANG B,XUE J S,YU Y H,et al. Fine regulation of ARF17 for anther development and pollen formation[J]. BMC Plant Biology,2017,17(1):243.
[27]NAGPAL P,ELLIS C M,WEBER H,et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation[J]. Development,2005,132(18):4107-4118.
[28]CHEN G W,YUE Y Z,LI L,et al. Genome-wide identification of the auxin response factor (ARF) gene family and their expression analysis during flower development of Osmanthus fragrans[J]. Forests,2020,11(2):245-260.
[29]李艳林,IQBAL S,侍婷,等. 梅PmARF17克隆及其在花发育中与内源激素的调控模式[J]. 中国农业科学,2021,54(13):2843-2857.
[30]王景超,程彬,于晓菲,等. 玉米ARF家族基因在雌花序发育过程中的表达分析[J]. 安徽农业科学,2021,49(24):132-135.
[31]刘帅,徐伟荣,张亚红,等. 基于转录组研究补光对设施‘红地球’葡萄萌芽的影响[J]. 果树学报,2021,38(3):305-317.
[32]刘帅,张亚红,刘鑫,等. 不同光源补光对设施红地球葡萄果实品质的影响[J]. 江苏农业学报,2021,37(4):949-956.
[33]路瑶,段慧,刘昆玉,等. 红地球葡萄花芽分化的观察[J]. 湖南农业科学,2017(9):77-79.
[34]贾楠. 葡萄花芽分化及其主要影响因素的研究进展[J]. 河北果树,2020(1):1-3.
[35]林玲. 一年两收栽培模式下摘心和生长调节剂对‘夏黑’葡萄花芽分化规律影响的研究[D]. 南宁:广西大学,2017.
[36]REED J W. Roles and activities of Aux/IAA proteins in Arabidopsis[J]. Trends Plant Science,2001,6(9):420-425.
[37]TIAN C E,MUTO H,HIGUCHI K,et al. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit,indicating its possible involvement in auxin homeostasis in light condition[J]. Plant Journal,2004,40(3):333-343.
[38]VERT G,WALCHER C L,CHORY J,et al. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2[J]. Pnas,2008,105(28):9829-9834.
[39]FOLTA K M,PONTIN M A,KarliN-NEUMANN G,et al. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light[J]. Plant Journal,2010,36(2):203-214.
[40]SUN J,QI L,LI Y,et al. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis[J]. Plant Cell,2013,25(6):2102-2114.
[41]WANG D,PEI K,FU Y,et al. Genome-wide analysis of the auxin response factors (ARF)gene family in rice (Oryza sativa)[J]. Gene,2007,394(1/2):13-24.

备注/Memo

备注/Memo:
收稿日期:2022-08-23 基金项目:宁夏回族自治区重点研发计划项目(2021BEF02016)作者简介:袁苗(1997-),女,宁夏固原人,硕士研究生,主要从事园艺学研究。(E-mail)yuanmiao970915@163.com 通讯作者:张亚红,(E-mail)zhyhcau@sina.com
更新日期/Last Update: 2023-09-12