[1]赵为民,戴超辉,陈哲,等.CRISPR/dCas9-KRAB系统沉默猪LncRNA-NEAT1基因[J].江苏农业学报,2023,(04):1036-1042.[doi:doi:10.3969/j.issn.1000-4440.2023.04.013]
 ZHAO Wei-min,DAI Chao-hui,CHEN Zhe,et al.Silencing of pig LncRNA-NEAT1 gene by CRISPR/dCas9-KRAB system[J].,2023,(04):1036-1042.[doi:doi:10.3969/j.issn.1000-4440.2023.04.013]
点击复制

CRISPR/dCas9-KRAB系统沉默猪LncRNA-NEAT1基因()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
1036-1042
栏目:
畜牧兽医·水产养殖
出版日期:
2023-08-30

文章信息/Info

Title:
Silencing of pig LncRNA-NEAT1 gene by CRISPR/dCas9-KRAB system
作者:
赵为民123戴超辉123陈哲123涂枫123李辉123付言峰123李碧侠123任守文123程金花123
(1.江苏省农业科学院畜牧研究所,江苏南京210014;2.江苏省农业种质资源保护与利用平台,江苏南京210014;3.农业农村部种养结合重点实验室,江苏南京210014)
Author(s):
ZHAO Wei-min123DAI Chao-hui123CHEN Zhe123TU Feng123LI Hui123FU Yan-feng123LI Bi-xia123REN Shou-wen123CHENG Jin-hua123
(1.Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing 210014, China;3.Jiangsu Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)
关键词:
CRISPRdCas9-KRABLncRNA-NEAT1基因基因沉默
Keywords:
CRISPRdCas9-KRABLncRNA-NEAT1 genepiggene silencing
分类号:
S852.28
DOI:
doi:10.3969/j.issn.1000-4440.2023.04.013
文献标志码:
A
摘要:
本研究利用RT-PCR检测LncRNA-NEAT1基因表达在细胞中的亚定位,采用5′RACE获得LncRNA-NEAT1基因的转录起始位点;利用CRISPOR软件对-300~0 bp区域的LncRNA-NEAT1启动子序列设计sgRNA并构建到px330载体,通过转染细胞与T7E1酶切验证sgRNA效率;利用酶切和亚克隆方法将dCas9-KRAB-BSD片段替换px330载体的Cas9序列,形成重组px330-dCas9-KRAB载体;将验证有效的sgRNA构建到px330-dCas9-KRAB载体,形成px330-sgRNA-dCas9-KRAB载体。添加不同质量浓度的Blasticidin S处理细胞,以最小致死质量浓度来确定筛选质量浓度。转染px330-sgRNA-dCas9-KRAB载体并用Blasticidin S筛选细胞7 d后进行LncRNA-NEAT1基因的表达检测,同时对sgRNA在LncRNA-NEAT1基因启动子上的结合位点进行Sanger测序,以进一步验证上述结合位点是否发生切割。结果显示LncRNA-NEAT1主要表达于细胞核,而在细胞质中几乎不表达。5′RACE获得了LncRNA-NEAT1 5′端大约270 bp的序列。qPCR检测结果显示,与对照组相比,sgRNA1和sgRNA2能够显著抑制LncRNA-NEAT1 的表达(P<005)。Sanger测序结果表明sgRNA1 和sgRNA2所在的位点并没有发生碱基缺失和插入。研究结果为后续进一步研究LncRNA-NEAT1在先天性免疫反应中的功能奠定了基础。
Abstract:
In this study, the sub-localization of LncRNA-NEAT1 in cells was detected by RT-PCR. And the transcription initiation site of LncRNA-NEAT1 gene was obtained by 5′RACE. The CRISPOR software was used to design the sgRNA in the promoter sequence of LncRNA-NEAT1 within -300~0 bp region. The selected sgRNA was constructed into px330, and the efficiency of sgRNA was verified by transfected cells and T7E1 digestion. Cas9 fragment in the px330 vector was replaced by the dCas9-KRAB-BSD fragment using enzyme digestion and subcloning to form a recombinant px330-dCas9-KRAB vector. It was verified that the effective sgRNA was constructed into the px330-dCas9-KRAB vector to form the px330-sgRNA-dCas9-KRAB vector. Cells were treated by adding different concentrations of Blasticidin S. And the screening concentration was determined by the minimum lethal concentration. The px330-sgRNA-dCas9-KRAB vector was transfected into the cells. After seven days of screening cells with Blasticidin S, the expression of LncRNA-NEAT1 gene was detected. Meanwhile, the binding site of sgRNA on the LncRNA-NEAT1 gene promoter was subjected to Sanger sequencing to further verify whether the above binding site was cleaved. The results showed that LncRNA-NEAT1 was mainly expressed in the nucleus, but hardly in the cytoplasm. The 5′RACE obtained a sequence of approximately 270 bp at the 5′ end of LncRNA-NEAT1. The qPCR results showed that compared with the control group, sgRNA1 and sgRNA2 could significantly inhibit the expression of LncRNA-NEAT1 (P<0.05). Sanger sequencing results showed that there were no deletions and insertions at the sites where sgRNA1 and sgRNA2 were located. The results laid the foundation for further research on the function of LncRNA-NEAT1 in the innate immune response.

参考文献/References:

[1]LODA A, HEARD E. Xist RNA in action: past, present, and future[J]. PLoS Genet, 2019, 15(9):e1008333.
[2]KUANG L D, LEI M, LI C Y, et al. Whole transcriptome sequencing reveals that non-coding RNAs are related to embryo morphogenesis and development in rabbits[J]. Genomics, 2020, 112(3):2203-2212.
[3]MACDONALD W A, MANN M R W. Long noncoding RNA functionality in imprinted domain regulation[J]. PLoS Genet, 2020, 16(8):e1008930.
[4]LIU B, SUN L, LIU Q, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis[J]. Cancer Cell, 2015, 27(3):370-381.
[5]XU H, JIANG Y, XU X, et al.Inducible degradation of LncRNA sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing stat1 mRNA[J]. Nat Immunol, 2019, 20(12):1621-1630.
[6]JIN L, TANG Q, HU S, et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription[J]. Nat Commun, 2021, 12(1):3715.
[7]GAO J, PAN Y, XU Y, et al. Unveiling the long non-coding RNA profile of porcine reproductive and respiratory syndrome virus-infected porcine alveolar macrophages[J]. BMC Genomics, 2021, 22(1):177.
[8]LIU J, ZHOU Y, HU X, et al.Transcriptome analysis reveals the profile of Long non-coding RNAs during chicken muscle development[J]. Front Physiol, 2021, 12:660370.
[9]DU Z Q, EISLEY C J, ONTERU S K, et al. Identification of species-specific novel transcripts in pig reproductive tissues using RNA-seq[J]. Anim Genet, 2014, 45(2):198-204.
[10]DERRIEN T, JOHNSON R, BUSSOTTI G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression[J]. Genome Res, 2012, 22(9):1775-1789.
[11]FATICA A, BOZZONI I. Long non-coding RNAs: new players in cell differentiation and development[J]. Nat Rev Genet, 2014, 15(1):7-21.
[12]BOETTCHER M, MCMANUS M T. Choosing the right tool for the job: RNAi, TALEN, or CRISPR[J]. Mol Cell, 2015, 58(4):575-585.
[13]QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183.
[14]GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2):442-451.
[15]GILBERT L A, HORLBECK M A, ADAMSON B, et al. Genome-scale CRISPR-mediated control of gene repression and activation [J]. Cell, 2014, 159(3):647-661.
[16]ALERASOOL N, SEGAL D, LEE H, et al. An efficient KRAB domain for CRISPRi applications in human cells[J]. Nat Methods, 2020, 17(11):1093-1096.
[17]LIU S J, HORLBECK M A, CHO S W, et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells[J]. Science, 2017, 355(6320): 7111.
[18]KLANN T S, BLACK J B, CHELLAPPAN M, et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome[J]. Nat Biotechnol, 2017, 35(6):561-568.
[19]THAKORE P I, DIPPOLITO A M, SONG L, et al. Highly specific epigenome editing by CRISPR/Cas9 repressors for silencing of distal regulatory elements[J].Nat Methods, 2015,12(12):1143-1149.
[20]MANDEGAR M A, HUEBSCH N, FROLOV E B, et al. CRISPR Interference efficiently induces specific and reversible gene silencing in human iPSCs[J]. Cell Stem Cell,2016, 18(4):541-553.
[21]SUNWOO H, DINGER M E, WILUSZ J E, et al. Men epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles[J]. Genome Res, 2009, 19(3):347-359.
[22]IMAMURA K, IMAMACHI N, AKIZUKI G, et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli[J]. Mol Cell, 2014, 53(3):393-406.
[23]LI K, YAO T, ZHANG Y, et al. NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: role, mechanism and therapeutic potential[J]. Int J Biol Sci, 2021, 17(13):3428-3440.
[24]赵为民, 方晓敏, 涂枫, 等.猪单核源性巨噬细胞受FSL-1 刺激后lncRNAs的鉴定与特征分析[J]. 江苏农业学报, 2019, 35(2) :346-356.
[25]ZHAO Y, HOU Y, XU Y, et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome[J]. Nat Commun,2021, 12(1):2217.
[26]SAKUMA T, NISHIKAWA A, KUME S, et al. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system[J]. Sci Rep,2014, 4:5400.
[27]CEBOLA I. Deletion of regulatory elements with all-in-one CRISPR-Cas9 Vectors[J]. Methods Mol Biol, 2021, 2351:321-334.
[28]RADZISHEUSKAYA A, SHLYUEVA D, MULLER I, et al. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression[J]. Nucleic Acids Res, 2016, 44(18):e141.
[29]LAM M T, LI W, ROSENFELD M G, et al. Enhancer RNAs and regulated transcriptional programs[J]. Trends Biochem Sci, 2014, 39(4):170-182.
[30]CHEN H, DU G, SONG X, et al. Non-coding transcripts from enhancers: new insights into enhancer activity and gene expression regulation[J]. Genomics Proteomics Bioinformatics, 2017,15(3):201-207.
[31]NOJIMA T, PROUDFOOT N J. Mechanisms of LncRNA biogenesis as revealed by nascent transcriptomics[J]. Nat Rev Mol Cell Biol, 2022, 23(6):389-406.
[32]AOYAGI N, WASSARMAN D A. Developmental and transcriptional consequences of mutations in drosophila TAF (Ⅱ) 60[J]. Mol Cell Biol,2001, 21(20):6808-6819.
[33]DANINO Y M, EVEN D, IDESES D, et al. The core promoter: at the heart of gene expression[J]. Biochim Biophys Acta, 2015, 1849(8):1116-1131.
[34]BUTLER J E, KADONAGA J T. The RNA polymerase Ⅱ core promoter: a key component in the regulation of gene expression[J]. Genes Dev,2002, 16(20):2583-2592.

备注/Memo

备注/Memo:
收稿日期:2022-08-19 基金项目:江苏省种业振兴揭榜挂帅项目[JBGS(2021)099];扬州市重点研发项目(现代农业)(YZ2021037);国家生猪产业技术体系项目(CARS-PIG-35);江苏省农业重大新品种创制项目(PZCZ201733) 作者简介:赵为民(1983-),男,湖北钟祥人,博士,副研究员,主要从事猪抗病育种研究。(E-mail)zhao_weimin1983@aliyun.com 通讯作者:程金花,(E-mail)jhcheng@jaas.ac.cn
更新日期/Last Update: 2023-09-12