参考文献/References:
[1]LODA A, HEARD E. Xist RNA in action: past, present, and future[J]. PLoS Genet, 2019, 15(9):e1008333.
[2]KUANG L D, LEI M, LI C Y, et al. Whole transcriptome sequencing reveals that non-coding RNAs are related to embryo morphogenesis and development in rabbits[J]. Genomics, 2020, 112(3):2203-2212.
[3]MACDONALD W A, MANN M R W. Long noncoding RNA functionality in imprinted domain regulation[J]. PLoS Genet, 2020, 16(8):e1008930.
[4]LIU B, SUN L, LIU Q, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis[J]. Cancer Cell, 2015, 27(3):370-381.
[5]XU H, JIANG Y, XU X, et al.Inducible degradation of LncRNA sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing stat1 mRNA[J]. Nat Immunol, 2019, 20(12):1621-1630.
[6]JIN L, TANG Q, HU S, et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription[J]. Nat Commun, 2021, 12(1):3715.
[7]GAO J, PAN Y, XU Y, et al. Unveiling the long non-coding RNA profile of porcine reproductive and respiratory syndrome virus-infected porcine alveolar macrophages[J]. BMC Genomics, 2021, 22(1):177.
[8]LIU J, ZHOU Y, HU X, et al.Transcriptome analysis reveals the profile of Long non-coding RNAs during chicken muscle development[J]. Front Physiol, 2021, 12:660370.
[9]DU Z Q, EISLEY C J, ONTERU S K, et al. Identification of species-specific novel transcripts in pig reproductive tissues using RNA-seq[J]. Anim Genet, 2014, 45(2):198-204.
[10]DERRIEN T, JOHNSON R, BUSSOTTI G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression[J]. Genome Res, 2012, 22(9):1775-1789.
[11]FATICA A, BOZZONI I. Long non-coding RNAs: new players in cell differentiation and development[J]. Nat Rev Genet, 2014, 15(1):7-21.
[12]BOETTCHER M, MCMANUS M T. Choosing the right tool for the job: RNAi, TALEN, or CRISPR[J]. Mol Cell, 2015, 58(4):575-585.
[13]QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183.
[14]GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2):442-451.
[15]GILBERT L A, HORLBECK M A, ADAMSON B, et al. Genome-scale CRISPR-mediated control of gene repression and activation [J]. Cell, 2014, 159(3):647-661.
[16]ALERASOOL N, SEGAL D, LEE H, et al. An efficient KRAB domain for CRISPRi applications in human cells[J]. Nat Methods, 2020, 17(11):1093-1096.
[17]LIU S J, HORLBECK M A, CHO S W, et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells[J]. Science, 2017, 355(6320): 7111.
[18]KLANN T S, BLACK J B, CHELLAPPAN M, et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome[J]. Nat Biotechnol, 2017, 35(6):561-568.
[19]THAKORE P I, DIPPOLITO A M, SONG L, et al. Highly specific epigenome editing by CRISPR/Cas9 repressors for silencing of distal regulatory elements[J].Nat Methods, 2015,12(12):1143-1149.
[20]MANDEGAR M A, HUEBSCH N, FROLOV E B, et al. CRISPR Interference efficiently induces specific and reversible gene silencing in human iPSCs[J]. Cell Stem Cell,2016, 18(4):541-553.
[21]SUNWOO H, DINGER M E, WILUSZ J E, et al. Men epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles[J]. Genome Res, 2009, 19(3):347-359.
[22]IMAMURA K, IMAMACHI N, AKIZUKI G, et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli[J]. Mol Cell, 2014, 53(3):393-406.
[23]LI K, YAO T, ZHANG Y, et al. NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: role, mechanism and therapeutic potential[J]. Int J Biol Sci, 2021, 17(13):3428-3440.
[24]赵为民, 方晓敏, 涂枫, 等.猪单核源性巨噬细胞受FSL-1 刺激后lncRNAs的鉴定与特征分析[J]. 江苏农业学报, 2019, 35(2) :346-356.
[25]ZHAO Y, HOU Y, XU Y, et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome[J]. Nat Commun,2021, 12(1):2217.
[26]SAKUMA T, NISHIKAWA A, KUME S, et al. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system[J]. Sci Rep,2014, 4:5400.
[27]CEBOLA I. Deletion of regulatory elements with all-in-one CRISPR-Cas9 Vectors[J]. Methods Mol Biol, 2021, 2351:321-334.
[28]RADZISHEUSKAYA A, SHLYUEVA D, MULLER I, et al. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression[J]. Nucleic Acids Res, 2016, 44(18):e141.
[29]LAM M T, LI W, ROSENFELD M G, et al. Enhancer RNAs and regulated transcriptional programs[J]. Trends Biochem Sci, 2014, 39(4):170-182.
[30]CHEN H, DU G, SONG X, et al. Non-coding transcripts from enhancers: new insights into enhancer activity and gene expression regulation[J]. Genomics Proteomics Bioinformatics, 2017,15(3):201-207.
[31]NOJIMA T, PROUDFOOT N J. Mechanisms of LncRNA biogenesis as revealed by nascent transcriptomics[J]. Nat Rev Mol Cell Biol, 2022, 23(6):389-406.
[32]AOYAGI N, WASSARMAN D A. Developmental and transcriptional consequences of mutations in drosophila TAF (Ⅱ) 60[J]. Mol Cell Biol,2001, 21(20):6808-6819.
[33]DANINO Y M, EVEN D, IDESES D, et al. The core promoter: at the heart of gene expression[J]. Biochim Biophys Acta, 2015, 1849(8):1116-1131.
[34]BUTLER J E, KADONAGA J T. The RNA polymerase Ⅱ core promoter: a key component in the regulation of gene expression[J]. Genes Dev,2002, 16(20):2583-2592.