[1]蓝志鹏,童鑫,黄宇,等.土壤中磺胺甲口恶唑吸附-解吸反应[J].江苏农业学报,2023,(04):996-1004.[doi:doi:10.3969/j.issn.1000-4440.2023.04.009]
 LAN Zhi-peng,TONG Xin,HUANG Yu,et al.Adsorption-desorption of sulfamethoxazole in soils[J].,2023,(04):996-1004.[doi:doi:10.3969/j.issn.1000-4440.2023.04.009]
点击复制

土壤中磺胺甲口恶唑吸附-解吸反应()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
996-1004
栏目:
耕作栽培·资源环境
出版日期:
2023-08-30

文章信息/Info

Title:
Adsorption-desorption of sulfamethoxazole in soils
作者:
蓝志鹏童鑫黄宇杨杰文
(仲恺农业工程学院资源与环境学院,广东广州510225)
Author(s):
LAN Zhi-pengTONG XinHUANG YuYANG Jie-wen
(College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)
关键词:
磺胺甲口恶唑吸附解吸土壤
Keywords:
sulfamethoxazoleadsorptiondesorptionsoil
分类号:
X131.3
DOI:
doi:10.3969/j.issn.1000-4440.2023.04.009
文献标志码:
A
摘要:
研究土壤中磺胺甲口恶唑(SMX)的吸附-解吸反应对了解其降解及迁移过程至关重要。本研究以菜园土和砖红壤2种理化性质、有机质含量差异较大的土壤为试验对象,通过等温吸附和反应动力学试验,研究土壤对SMX的吸附量和吸附反应动力学,探讨pH值、陪伴离子(类型、质量浓度或浓度)以及土壤有机质含量等因素对吸附反应的影响,并在此基础上研究土壤对SMX的解吸特征。结果表明,SMX在这2种土壤中的吸附动力学可用拟二级动力学方程描述,吸附等温线可用Freundlich模型描述,菜园土对SMX的吸附量大于砖红壤,菜园土和砖红壤对SMX的最大吸附量分别为317 mg/kg和93 mg/kg。pH值为3.5~70时,土壤对SMX的吸附率随pH值升高而降低,其原因是pH值越高,土壤表面负电荷数量越多,对SMX的静电斥力越强。Cu2+可促进土壤对SMX的吸附,但苯胺和4-苯胺磺酸等芳香胺类化合物则会降低土壤对SMX的吸附。去除有机质将使土壤对SMX的最大吸附率下降约400%,表明土壤有机质是SMX的重要吸附载体。由于菜园土有机质含量较高,导致菜园土对SMX解吸能力低于砖红壤。本研究结果有助于了解不同土壤中SMX的吸附-解吸反应规律,可以为SMX的污染风险防范提供一定理论支持。
Abstract:
Degradation and migration of sulfamethoxazole (SMX) is highly dependent on its adsorption-desorption reaction in soils. This study aimed to characterize the adsorption-desorption of SMX in vegetable soil and latosol with significant differences in physicochemical properties and organic matter content. Adsorption isotherm and kinetics were evaluated together with the influence of some key factors that included pH, co-existing ions and content of organic matter. Additional emphasis was put on revealing the desorption behavior of SMX. The results showed that the adsorption kinetics of SMX could be fitted by second-order equation, and adsorption isotherm could be described by Freundlich model. The maximum adsorption capacities of SMX in vegetable soil and latosol were 317 mg/kg and 9.3 mg/kg, respectively. Within the examined pH range (3.5-7.0), SMX adsorption in soils was decreased with the increase of pH, which was owing to the enhancement in electrostatic repulsion of soil surfaces towards SMX. Correspondingly, the presence of Cu2+ could promote the adsorption of SMX by decreasing the number of negative charges on soil surfaces, and aromatic amine compounds like aniline and 4-aniline sulfonic acid could exert inhibitive effect through competitive adsorption. Organic matter (OM) was believed to play major role in the adsorption of SMX since SMX adsorption could be decreased by 400% with the removal of OM. Also, the desorption ability of SMX in the vegetable soil was lower than that in the latosol due to its high content of OM. The results of this study are helpful for us to understand the adsorption-desorption behavior of SMX in soils and can provide useful knowledge for controlling its environmental risk.

参考文献/References:

[1]胡双庆,张玉,沈根祥. 抗生素磺胺嘧啶和磺胺甲恶唑在土壤中的淋溶行为研究[J].环境科学研究,2022,35(2):470-477.
[2]ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782.
[3]ZHI S, SHEN S, ZHOU J, et al. Systematic analysis of occurrence, density and ecological risks of 45 veterinary antibiotics: focused on family livestock farms in Erhai Lake Basin, Yunnan, China[J].Environmental Pollution,2020,267:115539.
[4]LYU J, YANG L, ZHANG L, et al. Antibiotics in soil and water in China-a systematic review and source analysis[J].Environmental Pollution,2020,266:115147.
[5]姜蕾,陈书怡,杨蓉,等. 长江三角洲地区典型废水中抗生素的初步分析[J].环境化学,2008(3):371-374.
[6]HU X, ZHOU Q, LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J].Environmental Pollution, 2010,158(9):2992-2998.
[7]BYRNE-BAILEY K G, GAZE W H, KAY P, et al. Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom[J]. Antimicrob Agents Chemother,2009,53(2):696-702.
[8]CHEN Q L, AN X L, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J].Environment International,2016,92/93:1-10.
[9]ZHOU Y T, NIU L L, ZHU S Y, et al. Occurrence, abundance, and distribution of sulfonamide and tetracycline resistance genes in agricultural soils across China[J].Science of the Total Environment,2017,599/600:1977-1983.
[10]张崇淼,徐欢,刘静,等. 城市污水处理系统中沙门氏菌对四环素和磺胺甲恶唑的耐药性[J].环境科学研究,2014,27(3):309-313.
[11]LIU F, WU J S, YING G G, et al. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline[J].Applied Microbiology and Biotechnology,2012,95(6):1615-1623.
[12]SCHAUSS K, FOCKS A, LEININGER S, et al. Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils[J].Environmental Microbiology,2009,11(2):446-456.
[13]BARAN W, SOCHACKA J, WARDAS W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere,2006,65(8):1295-1299.
[14]WANG H X, WANG B, ZHAO Q, et al. Antibiotic body burden of Chinese school children: a multisite biomonitoring-based study[J]. Environmental Science & Technology,2015,49(8):5070-5079.
[15]LIU S S, ZHAO H X, LEHMLER H J, et al. Antibiotic pollution in marine food webs in Laizhou Bay, North China: trophodynamics and human exposure implication[J].Environmental Science & Technology,2017,51(4):2392-2400.
[16]徐永刚,宇万太,马强,等. 环境中抗生素及其生态毒性效应研究进展[J].生态毒理学报,2015,10(3):11-27.
[17]金磊,姜蕾,韩琪,等. 华东地区某水源水中13种磺胺类抗生素的分布特征及人体健康风险评价[J].环境科学,2016,37(7):2515-2521.
[18]MARTNEZ-HERNNDEZ V, MEFFE R, LPEZ S H, et al. The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: a kinetics study[J].Science of the Total Environment,2016,559:232-241.
[19]KODEOV R, GRABIC R, KOCREK M, et al. Pharmaceuticals’ sorptions relative to properties of thirteen different soils[J].Science of the Total Environment,2015,511:435-443.
[20]CHEN K L, LIU L C, CHEN W R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils[J]. Environmental Pollution,2017,231:1163-1171.
[21]HU S Q, ZHANG Y, SHEN G X, et al. Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems[J].Soil and Tillage Research,2019,186:233-241.
[22]VIEIRA A P, RATH S, FOSTIER A H. Sorption of sulfachloropyridazine in Brazilian soils[J].Journal of the Brazilian Chemical Society,2017,28:158-167.
[23]张海洋,陈凌源,何鸿庆,等.农田土壤对磺胺甲恶唑和双酚A的吸附[J].安徽农业科学,2020,48(19):60-64.
[24]MATYNIA A, LENOIR T, CAUSSE B, et al. Semi-empirical proton binding constants for natural organic matter[J].Geochimica et Cosmochimica Acta,2010,74(6):1836-1851.
[25]GAO J, PEDERSEN J A. Sorption of sulfonamide antimicrobial agents to humic acid-clay complexes[J].Journal of Environmental Quality,2010,39(1):228-235.
[26]SHAO Y F, LIU X J, LIU A J, et al. Co-sorption of sulfamethoxazole and Cu onto several soils with different properties and their binding mechanism[J]. IOP Conference Series: Earth and Environmental Science,2020,432(1). DOI:10.1088/1755-1315/432/1/012009.
[27]WU D, PAN B, WU M, et al. Coadsorption of Cu and sulfamethoxazole on hydroxylized and graphitized carbon nanotubes[J].Science of the Total Environment,2012,427/428:247-252.
[28]HU X J, LIU Y G, ZENG G M, et al. Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets[J].Journal of Colloid and Interface Science,2014,426:213-220.
[29]宋艳宇,宋长春,柴俊海,等. 硝基苯、苯胺在湿地土壤不同有机组分中的吸附特征[J].环境科学学报,2009,29(5):997-1003.
[30]CHATAIGNER I, PANEL C, GRARD H, et al. Sulfonyl vs. carbonyl group:which is the more electron-withdrawing?[J]. Chemical Communications,2007,38(31):3288-3290.
[31]梁重山,党志,刘丛强,等. 土壤有机质对菲的吸附-解吸平衡的影响[J].高等学校化学学报,2005,26(4):671-676.
[32]CONDE-CID M, NVOA-MUOZ J C, FERNNDEZ-SANJURJO M J, et al. Pedotransfer functions to estimate the adsorption and desorption of sulfadiazine in agricultural soils[J].Science of the Total Environment,2019,691:933-942.
[33]CONDE-CID M, FERREIRA-COELHO G, FERNNDEZ-CALVIO D, et al. Single and simultaneous adsorption of three sulfonamides in agricultural soils:effects of pH and organic matter content[J].Science of the Total Environment,2020,744:140872.
[34]ALVAREZ-ESMORS C, CONDE-CID M, FERNNDEZ-SANJURJO M J, et al. Environmental relevance of adsorption of doxycycline, enrofloxacin, and sulfamethoxypyridazine before and after the removal of organic matter from soils[J].Journal of Environmental Management,2021,287:112354.
[35]DORETTO K M, PERUCHI L M, RATH S. Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils[J].Science of the Total Environment,2014,476/477:406-414.
[36]CONDE-CID M, FERNNDEZ-CALVIO D, FERNNDEZ-SANJURJO M J, et al. Adsorption/desorption and transport of sulfadiazine, sulfachloropyridazine, and sulfamethazine, in acid agricultural soils[J].Chemosphere,2019,234:978-986.
[37]ZHU D, HYUN S, PIGNATELLO J J, et al. Evidence for π-π electron donor-acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption[J].Environmental Science & Technology,2004,38(16):4361-4368.

相似文献/References:

[1]张晶晶,汤一,杨梦璇.茶渣吸附性能在茶汤保鲜中的应用[J].江苏农业学报,2016,(05):1162.[doi:10.3969/j.issn.1000-4440.2016.05.033]
 ZHANG Jing-jing,TANG Yi,YANG Meng-xuan.Preservation of tea infusion by tea waste adsorption[J].,2016,(04):1162.[doi:10.3969/j.issn.1000-4440.2016.05.033]
[2]高军,秦小健,周海峰,等.凹土对酞酸酯在土壤中吸附解吸的影响[J].江苏农业学报,2016,(06):1344.[doi:doi:10.3969/j.issn.1000-4440.2016.06.023]
 GAO Jun,QIN Xiao-jian,ZHOU Hai-feng,et al.Effects of attapulgite on sorption and desorption of soil for PAEs[J].,2016,(04):1344.[doi:doi:10.3969/j.issn.1000-4440.2016.06.023]
[3]苗玉杰,汪院生,郭西亚,等.膨润土改性微囊藻基生物炭对Cr(Ⅵ)的吸附性能[J].江苏农业学报,2024,(02):270.[doi:doi:10.3969/j.issn.1000-4440.2024.02.009]
 MIAO Yu-jie,WANG Yuan-sheng,GUO Xi-ya,et al.Adsorption properties of bentonite-modified Microcystis-based biochar to Cr(Ⅵ)[J].,2024,(04):270.[doi:doi:10.3969/j.issn.1000-4440.2024.02.009]

备注/Memo

备注/Memo:
收稿日期:2022-09-19 基金项目:国家自然科学基金项目(41671235) 作者简介:蓝志鹏(1997-),男,广东兴宁人,硕士研究生,主要从事抗生素土壤环境化学研究。(Tel)18219160931;(E-mail)2232240840@qq.com 通讯作者:杨杰文,(E-mail)jiewenyang@zhku.edu.cn
更新日期/Last Update: 2023-09-12