参考文献/References:
[1]JASKULAK M, GROBELAK A, VANDENBULCKE F. Modelling assisted phytoremediation of soils contaminated with heavy metals-main opportunities, limitations, decision making and future prospects[J]. Chemosphere, 2020, 249:1-16.
[2]HUANG Y, WANG L Y, WANG W J, et al. Current status of agricultural soil pollution by heavy metals in China: a meta-analysis[J]. Science of the Total Environment, 2019, 651: 3034-3042.
[3]SATPATHY D, REDDY M V, DHAL S P. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the east coast of India[J]. BioMed Research International, 2014, 2014: 1-11.
[4]FONTI V, DELL’ANNO A, BEOLCHINI F. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments?[J]. Science of the Total Environment, 2016, 563/564: 302-319.
[5]HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology, 2016, 50(8): 4178-4185.
[6]YIN Y, YI Q Z, CHENG H L. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils[J]. PLoS One, 2015, 10(4): 1-9.
[7]YU L L, ZHU J Y, HUANG Q Q, et al. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety[J]. Ecotoxicology and Environmental Safety, 2014, 108: 287-293.
[8]ROSENBLUETH M, MARTNEZ-ROMERO E. Bacterial endophytes and their interactions with hosts[J]. Molecular Plant-Microbe Interactions, 2006, 19(8): 827-837.
[9]SARAVANAN V S, MADHAIYAN M, THANGARAJU M. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus[J]. Chemosphere, 2007, 66(9): 1794-1798.
[10]SHENG X F, XIA J J, JIANG C Y, et al. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J]. Environmental Pollution, 2008, 156(3): 1164-1170.
[11]WANG X D, HUA L, MA Y B. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): influence of calcium, magnesium, sodium, potassium and pH[J]. Chemosphere, 2012, 89(1): 89-95.
[12]CHANWAY C P, SHISHIDO M, NAIRN J, et al. Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria[J]. Forest Ecology and Management, 2000, 133(1/2): 81-88.
[13]PABLO R H, LEO S V O, JAN D V E. Properties of bacterial endophytes and their proposed role in plant growth[J]. Trends in Microbiology, 2008, 16(10): 463-471.
[14]INGA M, ODETA B, DANAS B, et al. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review[J]. Zemdirbyste-Agriculture, 2015, 102(4): 465-478.
[15]HASSAN E. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018, 147: 175-191.
[16]LUO J P, TAO Q, JUPA R, et al. Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii[J]. Environmental Science & Technology, 2019, 53(12): 6954-6963.
[17]RAHMATULLAH J, MUHAMMAD A K, SAJJAD A, et al. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of oryza sativa, via regulating its antioxidant machinery and endogenous hormones[J]. Plants, 2019, 8(10): 1-23.
[18]MA Y, OLIVEIRA R S, FREITAS H, et al. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation[J]. Frontiers in Plant Science, 2016, 7: 1-19.
[19]MA Y, RAJKUMAR M, ZHANG C, et al. Beneficial role of bacterial endophytes in heavy metal phytoremediation[J]. Journal of Environmental Management, 2016, 174: 14-25.
[20]张玮川,李剑,王志宇,等. 内生菌-植物联合修复污染土壤研究进展[J]. 农业资源与环境学报, 2021, 38(3): 355-364.
[21]李艳,李剑,刘庆辉,等. 植物-内生菌联合处理环境污染物研究进展[J]. 应用与环境生物学报, 2021, 27(6): 1706-1715.
[22]陈柯璇,汤雯婷,李丽娜,等. 种子内生菌增强宿主植物重金属抗性的功能机制研究进展[J]. 微生物学通报, 2021, 48(6): 2187-2194.
[23]ZHOU X, LIU X Q, ZHAO J T, et al. The endophytic bacterium Bacillus koreensis 181-22 promotes rice growth and alleviates cadmium stress under cadmium exposure[J]. Applied Microbiology and Biotechnology, 2021, 105(21/22): 8517-8529.
[24]SHAHZAD R, BILAL S, IMRAN M, et al. Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation[J]. Biochemical Journal, 2019, 476(21): 3385-3400.
[25]SHAHZAD R, WAQAS M, KHAN A L, et al. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa[J]. Plant Physiology and Biochemistry, 2016, 106: 236-243.
[26]SHAHZAD R, KHAN A L, BILAL S, et al. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. Sp. Lycopersici in tomato[J]. PeerJ, 2017, 5. DOI:10.7717//peerj.3107.
[27]CHENG C, WANG R, SUN L J, et al. Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa Cliangyou 513)[J]. Chemosphere, 2021, 275: 1-11.
[28]TIAN W, LI L, XIAO X, et al. Identification of a plant endophytic growth-promoting bacteria capable of inhibiting cadmium uptake in rice[J]. Journal of Applied Microbiology, 2022, 132(1): 520-531.
[29]ZHENG Z Y, LI P, XIONG Z Q, et al. Integrated network analysis reveals that exogenous cadmium-tolerant endophytic bacteria inhibit cadmium uptake in rice[J]. Chemosphere, 2022, 301: 1-9.
[30]ZHOU J Y, LI P, MENG D L, et al. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment[J]. Environmental Pollution, 2020, 260: 1-9.
[31]PUNJEE P, SIRIPORNADULSIL W, SIRIPORNADULSIL S. Reduction of cadmium uptake in rice endophytically colonized with the cadmium-tolerant bacterium Cupriavidus taiwanensis KKU2500-3[J]. Canadian Journal of Microbiology, 2018, 64(2): 131-145.
[32]SURASAK S, WILAILAK S. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation[J]. Ecotoxicology and Environmental Safety, 2013, 94: 94-103.
[33]WANG Y L, WANG R, KOU F L, et al. Cadmium-tolerant facultative endophytic Rhizobium larrymoorei S28 reduces cadmium availability and accumulation in rice in cadmium-polluted soil[J]. Environmental Technology & Innovation, 2022, 26: 1-11.
[34]CHENG C, NIE Z W, HE L Y, et al. Rice-derived facultative endophytic Serratia liquefaciens F2 decreases rice grain arsenic accumulation in arsenic-polluted soil[J]. Environmental Pollution, 2020, 259: 1-10.
[35]RUJIRA D, PAITIP T. Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria[J]. Chemosphere, 2019, 223: 448-454.
[36]LI Y, PANG H D, HE L Y, et al. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria[J]. Ecotoxicology and Environmental Safety, 2017, 138: 56-63.
[37]范美玉,黎妮,贾雨田,等. 耐镉阿氏芽孢杆菌缓解水稻受镉胁迫的研究[J]. 农业环境科学学报, 2021, 40(2): 279-286.
[38]冯玮,张蕾,宣慧娟,等. 西藏土壤中耐辐射阿氏芽胞杆菌T61的分离和鉴定[J]. 微生物学通报, 2016, 43(3): 488-494.
[39]付少委,楚超群,黎妮,等. 镉污染水稻种子内生细菌的分离及其耐镉性和植物促生性研究[J]. 微生物学报, 2022, 62(4): 1536-1548.
[40]SU Z Z, DAI M D, ZHU J N, et al. Dark septate endophyte Falciphora oryzae-assisted alleviation of cadmium in rice[J]. Journal of Hazardous Materials, 2021, 419: 1-13.
[41]YUAN Z L, LIN F C, ZHANG C L, et al. A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte[J]. FEMS Microbiology Letters, 2010, 307(1): 94-101.
[42]GHORBANI A, TAFTEH M, ROUDBARI N, et al. Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots[J]. Ecotoxicology and Environmental Safety, 2021, 209: 1-11.
[43]VERMA S, VARMA A, REXER K, et al. Piriformospora indica, gen. Et sp. Nov., a new root-colonizing fungus[J]. Mycologia, 1998, 90(5): 896-903.
[44]DABRAL S, YASHASWEE, VARMA A, et al. Biopriming with Piriformospora indica ameliorates cadmium stress in rice by lowering oxidative stress and cell death in root cells[J]. Ecotoxicology and Environmental Safety, 2019, 186: 1-12.
[45]MA L J, LI X M, WANG L L, et al. Endophytic infection modulates ROS-scavenging systems and modifies cadmium distribution in rice seedlings exposed to cadmium stress[J]. Theoretical and Experimental Plant Physiology, 2019, 31(4): 463-474.
[46]于飞,谷玥,张奇,等. 一株碱蓬内生真菌的鉴定及促生活性产物的初步研究[J]. 生物技术通报, 2016, 32(5): 151-157.
[47]CHEN X W, WU L, LUO N, et al. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice[J]. Geoderma, 2019, 337: 749-757.
[48]GAO M Y, CHEN X W, HUANG W X, et al. Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root[J]. Journal of Hazardous Materials, 2021, 416: 1-9.
[49]LI H, LUO N, ZHANG L J, et al. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?[J]. Science of the Total Environment, 2016, 571: 1183-1190.
[50]LUO N, LI X, CHEN A Y, et al. Does arbuscular mycorrhizal fungus affect cadmium uptake and chemical forms in rice at different growth stages?[J]. Science of the Total Environment, 2017, 599: 1564-1572.
[51]LI H, CHEN X W, WU L, et al. Effects of arbuscular mycorrhizal fungi on redox homeostasis of rice under Cd stress[J]. Plant and Soil, 2020, 455(1): 121-138.
[52]LI H, CHEN X W, WONG M H. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains[J]. Chemosphere, 2016, 145: 224-230.
[53]HUANG X, AN G, ZHU S, et al. Can Cd translocation in Oryza sativa L. be attenuated by arbuscular mycorrhizal fungi in the presence of EDTA?[J]. Environmental Science and Pollution Research, 2018, 25(10): 9380-9390.
[54]YANG X, QIN J, LI J, et al. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil[J]. Journal of Hazardous Materials, 2021, 406: 1-13.
[55]LEI L, ZHU Q, XU P, et al. The intercropping and arbuscular mycorrhizal fungus decrease Cd accumulation in upland rice and improve phytoremediation of Cd-contaminated soil by Sphagneticola calendulacea (L.) Pruski[J]. Journal of Environmental Management, 2021, 298: 1-11.
[56]ZHU Q, XU P, LEI L, et al. Transcriptome analysis reveals decreased accumulation and toxicity of Cd in upland rice inoculated with arbuscular mycorrhizal fungi[J]. Applied Soil Ecology, 2022, 177: 1-9.
[57]李信茹,苏海磊,周民,等. 丛枝菌根真菌对汞胁迫下水稻叶片生理和光合特性的影响[J]. 环境科学研究, 2021, 34(8): 1918-1927.
[58]李信茹. 汞胁迫下丛枝菌根真菌对水稻生长生理特性和吸收积累汞的影响[D]. 北京:中国环境科学研究院, 2021.
[59]王幼珊,张俊伶. 中国丛枝菌根真菌的保藏、共享服务与研究利用[J]. 菌物学报, 2019, 38(11): 1760-1807.
[60]ZHANG X H, YANG W J, WANG L M, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth of upland rice under soil Pb contamination [J]. Agricultural Science & Technology, 2013, 14(11): 1624-1628.
[61]CHAN W F, LI H, WU F Y, et al. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi[J]. Journal of Hazardous Materials, 2013, 262: 1116-1122.
[62]ZHANG X H, LIN A J, GAO Y L, et al. Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake[J]. Soil Biology and Biochemistry, 2009, 41(5): 930-935.
[63]CHAN W F, LI W C, WONG M H. Uptake kinetics of arsenic in upland rice cultivar Zhonghan 221 inoculated with arbuscular mycorrhizal fungi[J]. International Journal of Phytoremediation, 2015, 17(11): 1073-1080.
[64]WU F, HU J, WU S, et al. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils[J]. Environmental Science and Pollution Research, 2015, 22(12): 8919-8926.
[65]ZHANG X H, ZHU Y G, CHEN B D, et al. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil[J]. Journal of Plant Nutrition, 2005, 28(12): 2065-2077.
[66]CHEN X, LI H, CHAN W F, et al. Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress[J]. Chemosphere, 2012, 89(10): 1248-1254.
[67]SHUKLA A, SRIVASTAVA S, SUPRASANNA P. Genomics of metal stress-mediated signalling and plant adaptive responses in reference to phytohormones[J]. Current Genomics, 2017, 18(6): 512-522.
[68]SUSSMILCH F C, ATALLAH N M, BRODRIBB T J, et al. Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time[J]. Plant Signaling & Behavior, 2017, 12(9): 1-5.
[69]KIM Y H, KHAN A L, KIM D H, et al. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones.[J]. BMC Plant Biology, 2014, 14(1): 1-13.
[70]SAVITA G, VIJAY P S, PRABHAT K S, et al. Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings[J]. Acta Physiologiae Plantarum, 2011, 33(4): 1385-1397.
[71]ATICI , AGAR G, BATTAL P E, et al. Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress[J]. Biologia Plantarum, 2005, 49(2): 215-222.
[72]HAN Y L, WANG R, YANG Z R, et al. 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals[J]. Journal of Microbiology and Biotechnology, 2015, 25(7): 1119-1128.
[73]JAGNA E B, JAROSLAW E, RENATA E S, et al. The new insights into cadmium sensing[J]. Frontiers in Plant Science, 2014, 5: 1-13.
[74]BERNARD R G. Using soil bacteria to facilitate phytoremediation[J]. Biotechnology Advances, 2010, 28(3): 367-374.
[75]BABU A G, SHEA P J, SUDHAKAR D, et al. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil[J]. Journal of Environmental Management, 2015, 151: 160-166.
[76]ULLAH I, MATEEN A, AHMAD M A, et al. Heavy metal ATPase genes (HMAs) expression induced by endophytic bacteria, "AI001, and AI002" mediate cadmium translocation and phytoremediation[J]. Environmental Pollution, 2022, 293: 1-7.
[77]MA Y, PRASAD M N V, RAJKUMAR M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2): 248-258.
[78]SESSITSCH A, KUFFNER M, KIDD P, et al. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils[J]. Soil Biology and Biochemistry, 2013, 60(100): 182-194.
[79]CHI F, SHEN S H, CHENG H P, et al. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology[J]. Applied and Environmental Microbiology, 2005, 71(11): 7271-7278.
[80]MAGDZIAK Z, KOZLOWSKA M, KACZMAREK Z, et al. Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis.Ⅱ.Secretion of low molecular weight organic acids to the rhizosphere[J]. Ecotoxicology and Environmental Safety, 2011,74(1):33-40.
[81]LIU Y P, TAN H M, CAO L X, et al. Rice sprout endophytic Enterobacter sp. SE-5 could improve tolerance of mature rice plants to salt or Cd2+ in soils[J]. Archives of Agronomy and Soil Science, 2020, 66(7): 873-883.
[82]ISRAR M, JEWELL A, KUMAR D, et al. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1520-1526.
[83]LI X M, ZHANG L H. Endophytic infection alleviates Pb2+ stress effects on photosystem II functioning of Oryza sativa leaves[J]. Journal of Hazardous Materials, 2015, 295: 79-85.
[84]LI X M, BU N, LI Y Y, et al. Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions[J]. Journal of Hazardous Materials, 2012, 213/214: 55-61.
[85]DE S K A, SENABIO J A, PIETRO-SOUZA W, et al. Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L.[J]. Archives of Microbiology, 2021, 203(9): 5345-5361.
[86]DE A S A L, DOMINGUES JR A P, MAZZAFERA P. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress[J]. Chemosphere, 2015, 134: 141-149.
[87]LESS H, GALILI G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses[J]. Plant Physiology, 2008, 147(1): 316-330.
[88]GRATO P L, POLLE A, LEA P J, et al. Making the life of heavy metal-stressed plants a little easier[J]. Functional Plant Biology, 2005, 32(6): 481-494.
[89]MLLER I M, JENSEN P E, HANSSON A. Oxidative modifications to cellular components in plants[J]. Annual Review of Plant Biology, 2007, 58(1): 459-481.
[90]MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453-467.
[91]SHARMA S S, DIETZ K. The relationship between metal toxicity and cellular redox imbalance[J]. Trends in Plant Science, 2009, 14(1): 43-50.
[92]叶芯妤,邱雪梅,王月,等. 乙二醛酶系统及其在植物响应和适应环境胁迫中的作用[J]. 植物生理学报, 2019, 55(4): 401-410.
[93]CHARANPREET K, SNEH L S, SUDHIR K S. Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance[J]. Critical Reviews in Plant Science, 2014, 33(6): 429-456.
[94]RAHMAN A, MOSTOFA M G, ALAM M M, et al. Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers[J]. BioMed Research International, 2015, 2015: 1-12.
[95]BARCELO J, POSCHENRIEDER C. Plant water relations as affected by heavy metal stress: a review[J]. Journal of Plant Nutrition, 1990, 13(1): 1-37.
[96]OUZOUNIDOU G, MOUSTAKAS M, SYMEONIDIS L, et al. Response of wheat seedlings to ni stress: effects of supplemental calcium[J]. Archives of Environmental Contamination and Toxicology, 2006, 50(3): 346-352.
[97]LI X M, MA L J, LI Y Y, et al. Endophyte infection enhances accumulation of organic acids and minerals in rice under Pb2+ stress conditions[J]. Ecotoxicology and Environmental Safety, 2019, 174: 255-262.
[98]DIMKPA C O, MERTEN D, SVATO A, et al. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively[J]. Journal of Applied Microbiology, 2009, 107(5): 1687-1696.
[99]IMRAN A, ZABTA K S, SHOMAILA S, et al. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants[J]. Microbiological Research, 2019, 221: 36-49.
[100]IHSAN U, BASSAM O A, KHALID M S A, et al. Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene[J]. Ecotoxicology and Environmental Safety, 2019, 174: 197-207.
[101]ZHANG X H, ZHU Y G, CHEN B D, et al. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil[J]. Journal of Plant Nutrition, 2005, 28(12):2065-2077.
[102]MHLBACHOV G, IMON T, PECHOV M. The availability of Cd, Pb and Zn and their relationships with soil pH and microbial biomass in soils amended by natural clinoptilolite[J]. Plant, Soil and Environment, 2005, 51(1): 26-33.
[103]LI L J, ZENG X B, PAUL N W, et al. Arsenic resistance in fungi conferred by extracellular bonding and vacuole-septa compartmentalization[J]. Journal of Hazardous Materials, 2021, 401: 1-7.
[104]QIU Q, WANG Y T, YANG Z Y, et al. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation[J]. Food and Chemical Toxicology, 2011, 49(9): 2260-2267.
[105]WANG X, LIU Y G, ZENG G M, et al. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud[J]. Environmental and Experimental Botany, 2008, 62(3): 389-395.
[106]WANG J, YUAN J G, YANG Z Y, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.)[J]. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8942-8949.
[107]WENG B, XIE X, WEISS D J, et al. Kandelia obovata (S., L.) Yong tolerance mechanisms to cadmium: subcellular distribution, chemical forms and thiol pools[J]. Marine Pollution Bulletin, 2012, 64(11): 2453-2460.
[108]HEBA T E, NEMAT M H, ALSHAFEI M A. Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes[J]. Plant Physiology and Biochemistry, 2017, 118: 438-448.
[109]HAN H, WANG Q, HE L Y, et al. Increased biomass and reduced rapeseed Cd accumulation of oilseed rape in the presence of Cd-immobilizing and polyamine-producing bacteria[J]. Journal of Hazardous Materials, 2018, 353: 280-289.
[110]MAGDA P, GABRIELLA S, TIBOR J. Speculation: polyamines are important in abiotic stress signaling[J]. Plant Science, 2015, 237: 16-23.
[111]YI T H, CHING H K. Cadmium-induced oxidative damage in rice leaves is reduced by polyamines[J]. Plant and Soil, 2007, 291(1): 27-37.
[112]SUN L N, ZHANG Y F, HE L Y, et al. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J]. Bioresource Technology, 2010, 101(2): 501-509.
[113]SAHA M, SARKAR S, SARKAR B, et al. Microbial siderophores and their potential applications: a review[J]. Environmental Science and Pollution Research, 2016, 23(5): 3984-3999.
[114]BRAUD A, HOEGY F, JEZEQUEL K, et al. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway[J]. Environmental Microbiology, 2009, 11(5): 1079-1091.
[115]HALL J L. Cellular mechanisms for heavy metal detoxification and tolerance[J]. Journal of Experimental Botany, 2002, 53(366): 1-11.
[116]YAMAZAKI S, UEDA Y, MUKAI A, et al. Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance[J]. Plant Direct, 2018, 2(1): 1-15.
[117]MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9931-9935.
[118]PAN D D, HUANG G Y, YI J C, et al. Foliar application of silica nanoparticles alleviates arsenic accumulation in rice grain: co-localization of silicon and arsenic in nodes[J]. Environmental Science: Nano, 2022, 9(4): 1271-1281.
[119]YAMAJI N, MITATNI N, MA J F. A transporter regulating silicon distribution in rice shoots[J]. The Plant Cell, 2008, 20(5): 1381-1389.
[120]KAUR R, DAS S, BANSAL S, et al. Heavy metal stress in rice: uptake, transport, signaling, and tolerance mechanisms[J]. Physiologia Plantarum, 2021, 173(1): 430-448.
[121]SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant & Cell Physiology, 2012, 53(1): 213-224.
[122]SHAO J F, XIA J X, YAMAJI N, et al. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter[J]. Journal of Experimental Botany, 2018, 69(10): 2743-2752.
[123]SASAKI A, YAMAJI N, MA J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6013-6021.
[124]SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167.
[125]CHANG J D, HUANG S, YAMAJI N, et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]. Plant, Cell & Environment, 2020, 43(10): 2476-2491.
[126]TANG L, DONG J Y, QU M M, et al. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms[J]. Science of the Total Environment, 2022, 832: 1-11.
[127]SYRANIDOU E, THIJS S, AVRAMIDOU M, et al. Responses of the endophytic bacterial communities of Juncus acutus to pollution with metals, emerging organic pollutants and to bioaugmentation with indigenous strains[J]. Frontiers in Plant Science, 2018, 9: 1-14.
[128]SUN W H, XIONG Z, CHU L, et al. Bacterial communities of three plant species from Pb-Zn contaminated sites and plant-growth promotional benefits of endophytic Microbacterium sp. (strain BXGe71)[J]. Journal of Hazardous Materials, 2019, 370: 225-231.
[129]URKA Z, JOSEPH N, BERNHARD M, et al. Changes induced by heavy metals in the plant-associated microbiome of Miscanthus×giganteus[J]. Science of the Total Environment, 2020, 711: 1-10.
[130]MUEHE E M, OBST M, HITCHCOCK A, et al. Fate of Cd during microbial Fe (III) mineral reduction by a novel and Cd-tolerant Geobacter Species[J]. Environmental Science & Technology, 2013, 47(24): 14099-14109.
[131]DAI J, TANG Z, JIANG N, et al. Increased arsenic mobilization in the rice rhizosphere is mediated by iron-reducing bacteria[J]. Environmental Pollution, 2020, 263: 1-11.
[132]TSURUTA T, UMENAI D, HATANO T, et al. Screening micro-organisms for cadmium absorption from aqueous solution and cadmium absorption properties of Arthrobacter nicotianae[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(10): 1791-1796.