[1]原佳妮,赵延辉,侍玉梅,等.利用WGCNA挖掘种公鸡睾丸和附睾中影响精子活力的核心基因[J].江苏农业学报,2023,(03):762-769.[doi:doi:10.3969/j.issn.1000-4440.2023.03.017]
 YUAN Jia-ni,ZHAO Yan-hui,SHI Yu-mei,et al.Mining of hub genes affecting sperm motility in testes and epididymides of breeder cocks by WGCNA method[J].,2023,(03):762-769.[doi:doi:10.3969/j.issn.1000-4440.2023.03.017]
点击复制

利用WGCNA挖掘种公鸡睾丸和附睾中影响精子活力的核心基因()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
762-769
栏目:
畜牧兽医·水产养殖
出版日期:
2023-06-30

文章信息/Info

Title:
Mining of hub genes affecting sperm motility in testes and epididymides of breeder cocks by WGCNA method
作者:
原佳妮赵延辉侍玉梅倪和民郭勇盛熙晖齐晓龙王相国邢凯
(北京农学院动物科学技术学院,北京102206)
Author(s):
YUAN Jia-niZHAO Yan-huiSHI Yu-meiNI He-minGUO YongSHENG Xi-huiQI Xiao-longWANG Xiang-guoXING Kai
(Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China)
关键词:
种公鸡精子活力加权基因共表达网络(WGCNA)核心基因
Keywords:
breeder cocks sperm motilityweighted gene co-expression network analysis (WGCNA)hub gene
分类号:
S831.2
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.017
文献标志码:
A
摘要:
种公鸡的精子活力对养禽业的可持续发展至关重要,通过加权基因共表达网络(WGCNA)分析法挖掘种公鸡睾丸、附睾中调控精子活力的基因共表达模块和核心基因,并构建与种公鸡精子活力相关的调控网络。基于团队前期对不同精子活力种公鸡睾丸、附睾组织转录组测序数据的分析,用WGCNA方法构建基因共表达网络,识别与表型性状显著相关的基因模块,并对关键模块基因进行GO功能注释、KEGG通路富集分析。用Cytoscape软件筛选每个关键模块的核心基因并构建可视化共表达网络。结果表明,14 227个基因聚类到11个模块,以决定系数(R2)≥0.6、P<0.05为标准挖掘出青绿色(Turquoise)模块、黄色(Yellow)模块、红色(Red)模块与表型显著相关。对3个关键模块的基因进行功能分析,发现这些基因显著富集在核苷酸切除修复、同源重组、细胞色素P450对异类物质代谢、MAPK信号通路和细胞凋亡等通路上。选出的IFT家族基因与HMOX2、CYP4B1、ANG、ITGB2基因是与种公鸡精子活力相关的核心基因,可作为提高精子活力的潜在基因。
Abstract:
The sperm motility of breeding roosters is crucial for the sustainable development of the poultry farming. The coexpression modules and core genes regulating sperm motility in testis and epididymis were explored by weighted gene co-expression network analysis (WGCNA), and the regulatory network related to sperm motility in breeder cocks was constructed. The transcriptome sequencing data of testicular and epididymis tissues of breeder cocks with high and low sperm motility were analyzed. The gene co-expression network was constructed by WGCNA method, and gene modules significantly associated with phenotypic traits were identified. GO functional annotation and KEGG pathway enrichment analysis were performed for the module genes. Cytoscape software was used to screen key genes and visualize the co-expression network. The results showed that 14 227 genes were clustered into 11 modules, Turquoise, Yellow and Red modules were mined with R2≥0.6 and P<0.05 as criteria. Functional analysis of the genes in the three key modules showed that these genes were mainly enriched in nucleotide excision repair, homologous recombination, effects of cytochrome P450 on xenobiotic metabolism, MAPK signaling pathway, apoptosis and other signaling pathways. In this study, the selected IFT family genes HMOX2, CYP4B1, ANG and ITGB2 were core genes related to sperm motility of breeder cocks, which could be used as potential genes for improving sperm motility.

参考文献/References:

[1]刘一帆. 基于睾丸测序的鸡精子活力性状mRNA-miRNA-lncRNA转录调控研究[D]. 北京:中国农业大学, 2018.
[2]徐秀丽. 基于睾丸转录组测序筛选影响家鸽精子活力的关键mRNAs和非编码RNAs[D]. 杭州:浙江大学, 2021.
[3]熊婷,邬崇华,陈彪,等. 笼养山麻鸭精液品质的测定与分析[J]. 黑龙江畜牧兽医, 2020(14):53-56.
[4]LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008,9(1):559.
[5]CHENG Y, LI L, QIN Z, et al. Identification of castration-resistant prostate cancer-related hub genes using weighted gene co-expression network analysis[J]. J Cell Mol Med, 2020,24(14):8006-8017.
[6]LIU S, FANG L, ZHOU Y, et al. Analyses of inter-individual variations of sperm DNA methylation and their potential implications in cattle[J]. BMC Genomics, 2019,20(1):888.
[7]XU H, SUN W, PEI S, et al. Identification of key genes related to postnatal testicular development based on transcriptomic data of testis in Hu Sheep[J]. Front Genet, 2021,12:773695.
[8]ROBIC A, FARAUT T, FEVE K, et al. Correlation networks provide new insights into the architecture of testicular steroid pathways in pigs[J]. Genes, 2021,12(4):519-551.
[9]XING K, CHEN Y, WANG L, et al. Epididymal mRNA and miRNA transcriptome analyses reveal important genes and miRNAs related to sperm motility in roosters[J]. Poult Sci, 2022,101(1):101558.
[10]XING K, GAO M J, LI X, et al. An integrated analysis of testis miRNA and mRNA transcriptome reveals important functional miRNA-targets in reproduction traits of roosters[J]. Reproductive Biology, 2020,20(3):433-440.
[11]KIM D, PERTEA G, TRAPNELL C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biology, 2013,14(4):R36.
[12]ANDERS S, PYL P T, HUBER W. HTSeq-a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015,31(2):166-169.
[13]LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008,9(1):559.
[14]GU A H, JI G X, ZHOU Y, et al. Polymorphisms of nucleotide-excision repair genes may contribute to sperm DNA fragmentation and male infertility[J]. Reprod Biomed Online, 2010,21(5):602-609.
[15]ZHAO H X, SONG L X, MA N, et al. The dynamic changes of Nrf2 mediated oxidative stress, DNA damage and base excision repair in testis of rats during aging[J]. Experimental Gerontology, 2021,152:111460.
[16]WU S X, MIPAM T D, XU C F, et al. Testis transcriptome profiling identified lncRNAs involved in spermatogenic arrest of cattleyak[J]. PLoS One, 2020, 15(2): e0229503.
[17]LIN M, LYU J X, ZHAO D, et al. MRNIP is essential for meiotic progression and spermatogenesis in mice[J]. Biochem Biophys Res Commun, 2021,550:127-133.
[18]LE W, QI L, XU C, et al. Preliminary study of the homologous recombination repair pathway in mouse spermatogonial stem cells[J]. Andrology, 2018,6(3):488-497.
[19]ZHANG S Y, LIU Y H, HUANG Q, et al. Murine germ cell-specific disruption of Ift172 causes defects in spermiogenesis and male fertility[J]. Reproduction, 2020,159(4):409-421.
[20] TRAKSHEL G M, MAINES M D. Detection of two heme oxygenase isoforms in the human testis[J]. Biochem Biophys Res Commun, 1988,154(1):285-291.
[21]OZAWA N, GODA N, MAKINO N, et al. Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress[J]. J Clin Invest, 2002,109(4):457-467.
[22]FRANASIAK J M, BARNETT R, MOLINARO T A, et al. CYP1A1 3801T>C polymorphism implicated in altered xenobiotic metabolism is not associated with variations in sperm production and function as measured by total motile sperm and fertilization rates with intracytoplasmic sperm injection[J]. Fertility and Sterility, 2016,106(2):481-486.
[23]KIM B, BRETON S. The MAPK/ERK-signaling pathway regulates the expression and distribution of tight junction proteins in the mouse proximal epididymis[J]. Biology of Reproduction, 2016,94(1):22.
[24]NI F, HAO S, YANG W. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis[J]. Cell Death & Disease, 2019,10(8):515-541.
[25]伊茹汗. GPx5在骆驼附睾上的时空表达研究[D]. 呼和浩特:内蒙古农业大学, 2020.
[26]LAHNSTEINER F, MANSOUR N, CABERLOTTO S. Composition and metabolism of carbohydrates and lipids in Sparus aurata semen and its relation to viability expressed as sperm motility when activated[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2010,157(1):39-45.
[27]SONG X, LIN N H, WANG Y L, et al. Comprehensive transcriptome analysis based on RNA sequencing identifies critical genes for lipopolysaccharide-induced epididymitis in a rat model[J]. Asian J Androl, 2019,21(6):605-611.
[28]DAI D H, QAZI I H, RAM M X, et al. Exploration of miRNA and mRNA profiles in fresh and frozen-thawed boar sperm by transcriptome and small RNA sequencing[J]. Int J Mol Sci, 2019,20(4):802.
[29]SINGH R, LETAI A, SAROSIEK K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins[J]. Nat Rev Mol Cell Biol, 2019,20(3):175-193.
[30]JI G X, GU A H, HU F, et al. Polymorphisms in cell death pathway genes are associated with altered sperm apoptosis and poor semen quality[J]. Hum Reprod, 2009, 24(10):2439-2446.
[31]OZTRK H, OZTURK H, DOKUCU A I. The role of cell adhesion molecules in ischemic epididymal injury[J]. Int Urol Nephrol, 2007,39(2):565-570.
[32]OLSON K A, VERSELIS S J, FETT J W. Angiogenin is regulated in vivo as an acute phase protein[J]. Biochem Biophys Res Commun, 1998,242(3):480-483.
[33]ZHANG Y W, REN L, SUN X X, et al. Angiogenin mediates paternal inflammation-induced metabolic disorders in offspring through sperm tsRNAs[J]. Nat Commun, 2021,12(1):6673.
[34] MATSUURA N, TAKADA Y . Subclassification, molecular structure, function and ligand in integrin superfamily[J]. Nihon Rinsho Japanese Journal of Clinical Medicine, 1995, 53(7):1623-1630.
[35]MATSUYAMA T, NIINO N, KIYOSAWA N, et al. Toxicogenomic investigation on rat testicular toxicity elicited by 1,3-dinitrobenzene[J]. Toxicology, 2011,290(2/3):169-177.
[36]AZIZI H, NIAZI T A, SKUTELLA T. Successful transplantation of spermatogonial stem cells into the seminiferous tubules of busulfan-treated mice[J]. Reprod Health, 2021,18(1):189.

备注/Memo

备注/Memo:
收稿日期:2022-06-25 作者简介:原佳妮(1999-),女,山西晋城人,硕士研究生,研究方向为功能基因组学与生物信息学。(E-mail)BUAYjn@163.com 通讯作者:邢凯,(E-mail)xk181986@163.com
更新日期/Last Update: 2023-07-11