参考文献/References:
[1]刘一帆. 基于睾丸测序的鸡精子活力性状mRNA-miRNA-lncRNA转录调控研究[D]. 北京:中国农业大学, 2018.
[2]徐秀丽. 基于睾丸转录组测序筛选影响家鸽精子活力的关键mRNAs和非编码RNAs[D]. 杭州:浙江大学, 2021.
[3]熊婷,邬崇华,陈彪,等. 笼养山麻鸭精液品质的测定与分析[J]. 黑龙江畜牧兽医, 2020(14):53-56.
[4]LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008,9(1):559.
[5]CHENG Y, LI L, QIN Z, et al. Identification of castration-resistant prostate cancer-related hub genes using weighted gene co-expression network analysis[J]. J Cell Mol Med, 2020,24(14):8006-8017.
[6]LIU S, FANG L, ZHOU Y, et al. Analyses of inter-individual variations of sperm DNA methylation and their potential implications in cattle[J]. BMC Genomics, 2019,20(1):888.
[7]XU H, SUN W, PEI S, et al. Identification of key genes related to postnatal testicular development based on transcriptomic data of testis in Hu Sheep[J]. Front Genet, 2021,12:773695.
[8]ROBIC A, FARAUT T, FEVE K, et al. Correlation networks provide new insights into the architecture of testicular steroid pathways in pigs[J]. Genes, 2021,12(4):519-551.
[9]XING K, CHEN Y, WANG L, et al. Epididymal mRNA and miRNA transcriptome analyses reveal important genes and miRNAs related to sperm motility in roosters[J]. Poult Sci, 2022,101(1):101558.
[10]XING K, GAO M J, LI X, et al. An integrated analysis of testis miRNA and mRNA transcriptome reveals important functional miRNA-targets in reproduction traits of roosters[J]. Reproductive Biology, 2020,20(3):433-440.
[11]KIM D, PERTEA G, TRAPNELL C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biology, 2013,14(4):R36.
[12]ANDERS S, PYL P T, HUBER W. HTSeq-a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015,31(2):166-169.
[13]LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008,9(1):559.
[14]GU A H, JI G X, ZHOU Y, et al. Polymorphisms of nucleotide-excision repair genes may contribute to sperm DNA fragmentation and male infertility[J]. Reprod Biomed Online, 2010,21(5):602-609.
[15]ZHAO H X, SONG L X, MA N, et al. The dynamic changes of Nrf2 mediated oxidative stress, DNA damage and base excision repair in testis of rats during aging[J]. Experimental Gerontology, 2021,152:111460.
[16]WU S X, MIPAM T D, XU C F, et al. Testis transcriptome profiling identified lncRNAs involved in spermatogenic arrest of cattleyak[J]. PLoS One, 2020, 15(2): e0229503.
[17]LIN M, LYU J X, ZHAO D, et al. MRNIP is essential for meiotic progression and spermatogenesis in mice[J]. Biochem Biophys Res Commun, 2021,550:127-133.
[18]LE W, QI L, XU C, et al. Preliminary study of the homologous recombination repair pathway in mouse spermatogonial stem cells[J]. Andrology, 2018,6(3):488-497.
[19]ZHANG S Y, LIU Y H, HUANG Q, et al. Murine germ cell-specific disruption of Ift172 causes defects in spermiogenesis and male fertility[J]. Reproduction, 2020,159(4):409-421.
[20] TRAKSHEL G M, MAINES M D. Detection of two heme oxygenase isoforms in the human testis[J]. Biochem Biophys Res Commun, 1988,154(1):285-291.
[21]OZAWA N, GODA N, MAKINO N, et al. Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress[J]. J Clin Invest, 2002,109(4):457-467.
[22]FRANASIAK J M, BARNETT R, MOLINARO T A, et al. CYP1A1 3801T>C polymorphism implicated in altered xenobiotic metabolism is not associated with variations in sperm production and function as measured by total motile sperm and fertilization rates with intracytoplasmic sperm injection[J]. Fertility and Sterility, 2016,106(2):481-486.
[23]KIM B, BRETON S. The MAPK/ERK-signaling pathway regulates the expression and distribution of tight junction proteins in the mouse proximal epididymis[J]. Biology of Reproduction, 2016,94(1):22.
[24]NI F, HAO S, YANG W. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis[J]. Cell Death & Disease, 2019,10(8):515-541.
[25]伊茹汗. GPx5在骆驼附睾上的时空表达研究[D]. 呼和浩特:内蒙古农业大学, 2020.
[26]LAHNSTEINER F, MANSOUR N, CABERLOTTO S. Composition and metabolism of carbohydrates and lipids in Sparus aurata semen and its relation to viability expressed as sperm motility when activated[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2010,157(1):39-45.
[27]SONG X, LIN N H, WANG Y L, et al. Comprehensive transcriptome analysis based on RNA sequencing identifies critical genes for lipopolysaccharide-induced epididymitis in a rat model[J]. Asian J Androl, 2019,21(6):605-611.
[28]DAI D H, QAZI I H, RAM M X, et al. Exploration of miRNA and mRNA profiles in fresh and frozen-thawed boar sperm by transcriptome and small RNA sequencing[J]. Int J Mol Sci, 2019,20(4):802.
[29]SINGH R, LETAI A, SAROSIEK K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins[J]. Nat Rev Mol Cell Biol, 2019,20(3):175-193.
[30]JI G X, GU A H, HU F, et al. Polymorphisms in cell death pathway genes are associated with altered sperm apoptosis and poor semen quality[J]. Hum Reprod, 2009, 24(10):2439-2446.
[31]OZTRK H, OZTURK H, DOKUCU A I. The role of cell adhesion molecules in ischemic epididymal injury[J]. Int Urol Nephrol, 2007,39(2):565-570.
[32]OLSON K A, VERSELIS S J, FETT J W. Angiogenin is regulated in vivo as an acute phase protein[J]. Biochem Biophys Res Commun, 1998,242(3):480-483.
[33]ZHANG Y W, REN L, SUN X X, et al. Angiogenin mediates paternal inflammation-induced metabolic disorders in offspring through sperm tsRNAs[J]. Nat Commun, 2021,12(1):6673.
[34] MATSUURA N, TAKADA Y . Subclassification, molecular structure, function and ligand in integrin superfamily[J]. Nihon Rinsho Japanese Journal of Clinical Medicine, 1995, 53(7):1623-1630.
[35]MATSUYAMA T, NIINO N, KIYOSAWA N, et al. Toxicogenomic investigation on rat testicular toxicity elicited by 1,3-dinitrobenzene[J]. Toxicology, 2011,290(2/3):169-177.
[36]AZIZI H, NIAZI T A, SKUTELLA T. Successful transplantation of spermatogonial stem cells into the seminiferous tubules of busulfan-treated mice[J]. Reprod Health, 2021,18(1):189.