参考文献/References:
[1]BERRY D P, WALL E, PRYCE J E. Genetics and genomics of reproductive performance in dairy and beef cattle[J]. Animal: An International Journal of Animal Bioscience, 2014, 8(1):105-121.
[2]HJORTH M, POURTEYMOUR S, GRGENS S W, et al. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cell[J]. Acta Physiologica, 2016, 217(1):45-60.
[3]FRONTERA W R, OCHALA J. Skeletal muscle: a brief review of structure and function[J]. Calcified Tissue International, 2015, 96(3):183-195.
[4]TAJBAKHSH S. Skeletal muscle stem cells in developmental versus regenerative myogenesis[J]. Journal of Internal Medicine, 2009, 266(4):372-389.
[5]BOUKHA A, BONFATTI V, CECCHINATO A, et al. Genetic parameters of carcass and meat quality traits of double muscled Piemontese cattle[J]. Meat Science, 2011, 89(1):84-90.
[6]WEI D W, FENG L S, ZHANG W Z, et al. Characterization of the promoter region of bovine SIX4: roles of E-box and MyoD in the regulation of basal transcription[J]. Biochemical and Biophysical Research Communications, 2018, 496(1):44-50.
[7]WEI D W, MA X Y, ZHANG S, et al. Characterization of the promoter region of the bovine SIX1 gene: roles of MyoD, PAX7, CREB and MyoG[J]. Scientific Reports, 2017, 7(1).DOI:10.1038/S41598-017-12787-5.
[8]WEI D W, GUI L S, RAZA S H A, et al. NRF1 and ZSCAN10 bind to the promoter region of the SIX1 gene and their effects body measurements in Qinchuan cattle[J]. Scientific Reports, 2017, 7(1).DOI:10.1038/S41598-017-08384-1.
[9]RAZA S H A, KASTER N, KHAN R, et al. The role of microRNAs in muscle tissue development in beef cattle[J]. Genes, 2020, 11(3).DOI:10.3390/genes11030295.
[10]YUE B L, LI H, LIU M, et al. Characterization of lncRNA-miRNA-mRNA network to reveal potential functional ceRNAs in bovine skeletal muscle[J]. Frontiers in Genetics, 2019, 10.DOI:10.3389/fgene.2019.00091.
[11]FU Y Y, LI S, TONG H L, et al. WDR13 promotes the differentiation of bovine skeletal muscle-derived satellite cells by affecting PI3K/AKT signaling[J]. Cell Biology International, 2019, 43(7):799-808.
[12]LIAN L, KIM J, OKAZAWA H, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation[J]. Genes & Development, 2010, 24(11):1106-1118.
[13]ZHANG L, YUE T, JIANG J. Hippo signaling pathway and organ size control[J]. Fly (Austin), 2009, 3(1):68-73.
[14]YI J, LU L, YANGER K, et al. Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ[J]. Hepatology, 2016, 64(5):1757-1772.
[15]FURTH N, AYLON Y. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway[J]. Cell Death & Differentiation, 2017, 24(9):1488-1501.
[16]姚春和, 张 荣. miR-372靶向LATS2对结肠癌SW620细胞增殖、迁移侵袭的影响[J]. 广西医科大学学报, 2021, 38(10):1906-1911.
[17]MCNEILL H, REGINENSI A. Lats1/2 regulate Yap/Taz to control nephron progenitor epithelialization and inhibit myofibroblast formation[J]. Journal of the American Society of Nephrology, 2017, 28(3):852-861.
[18]冯瑞军,郑远航,盛智梅. 外泌体miR-574-5P通过下调大肿瘤抑制基因2促进胶质瘤增殖、侵袭和迁移[J]. 中国生物化学与分子生物学报, 2021, 38(11):1520-1527.
[19]王利宏,王庆增,鲍建军,等. Hippo信号通道中Lats2基因表达与湖羊肌肉生长发育的关系[J]. 南京农业大学学报, 2018, 41(3):519-525.
[20]鲍建军,苏锐,王庆增,等. Smads与Hippo通道中YAP1基因在湖羊肌肉组织中时空表达研究及关联分析[J]. 中国农业科学, 2016, 49(11) : 2203-2213.
[21]张玉龙. Hippo信号通道中Lats1基因对湖羊肌肉生长性状遗传调控的初步研究[D]. 扬州: 扬州大学, 2013.
[22]WEI D, RAZA S H A, WANG X, et al. Tissue expression analysis, cloning, and characterization of the 5′-regulatory region of the bovine LATS1 gene[J]. Frontiers in Veterinary Science, 2022, 9.DOI:10.3389/fvets.2022.853819.
[23]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods, 2001, 25(4):402-408.
[24]BADOUEL C, MCNEILL H. SnapShot: the hippo signaling pathway[J]. Cell, 2011, 145(3).DOI:10.1016/j.cell.2011.04.009.
[25]ZHAO B, TUMANENG K, GUAN K L. The hippo pathway in organ size control, tissue regeneration and stem cell self-renewal[J]. Nature Cell Biology, 2011, 13(8):877-883.
[26]O′HAYRE M, DEGESE M S, GUTKIND J S. Novel insights into G protein and G protein-coupled receptor signaling in cancer[J]. Current Opinion in Cell Biology, 2014, 27:126-135.
[27]LIU F, WANG X, HU G, et al. The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function[J]. The Journal of Biological Chemistry, 2014, 289(6):3308-3316.
[28]AMBROSINO C, IWATA T, SCAFOGLIO C, et al. TEF-1 and C/EBPβ are major p38α MAPK-regulated transcription factors in proliferating cardiomyocytes[J]. The Biochemical Journal, 2006, 396(1):163-172.
[29]WEN T, LIU J H, HE X Q, et al. Transcription factor TEAD1 is essential for vascular development by promoting vascular smooth muscle differentiation[J]. Cell Death & Differentiation, 2019, 26(12):2790-2806.
[30]HURASKIN D, EIBER N, REICHEL M, et al. Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers[J]. Development, 2016, 143(17):3128-3142.
[31]NING L, NELSON B R, BEZPROZVANNAYA S, et al. Requirement of MEF2A, C, and D for skeletal muscle regeneration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11):4109-4114.
[32]SCHIAFFINO S, DYAR K A, CALABRIA E. Skeletal muscle mass is controlled by the MRF4-MEF2 axis[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21(3):164-167.
[33]TAYLOR M V, HUGHES S M. Mef2 and the skeletal muscle differentiation program[J]. Seminars in Cell & Developmental Biology, 2017, 72:33-44.
[34]VALLEJO A, PERURENA N, GURUCEAGA E, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer[J]. Nature Communications, 2017, 8.DOI:10.1038/ncomms14294.
[35]ZAMMIT P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Seminars in Cell & Developmental Biology, 2017, 72:19-32.
[36]COLES C A, WADESON J, LEYTON C P, et al. Proliferation rates of bovine primary muscle cells relate to liveweight and carcase weight in cattle[J]. PLoS One, 2015, 10(4).DOI:10.1371/journal.pone.0124468.
[37]BUCKINGHAM M, RIGBY P W. Gene regulatory networks and transcriptional mechanisms that control myogenesis[J]. Developmental Cell, 2014, 28(3):225-238.
[38]XU D Q, WANG L, JIANG Z Z, et al. A new hypoglycemic mechanism of catalpol revealed by enhancing MyoD/MyoG-mediated myogenesis[J]. Life Sciences, 2018, 209:313-323.
[39]BODINE S C, LATRES E, BAUMHUETER S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy[J]. Science, 2001, 294(5547):1704-1708.